Dynkin system
Note: a Dynkin system is also called a "[ilmath]d[/ilmath]-system"[1] and the page d-system just redirects here.
Contents
Definition
===[[Dynkin systeyesnkin system/Definition 1}}
Second Definition
Given a set [ilmath]X[/ilmath] and a family of subsets of [ilmath]X[/ilmath] we denote [ilmath]\mathcal{D}\subseteq\mathcal{P}(X)[/ilmath] is a Dynkin system[2] on [ilmath]X[/ilmath] if:
- [ilmath]X\in\mathcal{D} [/ilmath]
- [ilmath]\forall A,B\in\mathcal{D}[B\subseteq A\implies A-B\in\mathcal{D}][/ilmath]
- Given a sequence [ilmath](A_n)_{n=1}^\infty\subseteq\mathcal{D}[/ilmath] that is increasing[Note 1] and has [ilmath]\lim_{n\rightarrow\infty}(A_n)=A[/ilmath] we have [ilmath]A\in\mathcal{D}[/ilmath]
Proof of equivalence of definitions
Proof of claim
[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math]
TODO: Flesh out the algebra (blue boxes)
Definition 1 [ilmath]\implies[/ilmath] definition 2
- Let [ilmath]\mathcal{D} [/ilmath] be a subgroup satisfying definition 1, then I claim it satisfies definition 2. Let us check the conditions.
- [ilmath]X\in\mathcal{D} [/ilmath] is satisfied by definition
- For [ilmath]A,B\in\mathcal{D} [/ilmath] with [ilmath]B\subseteq A[/ilmath] then [ilmath]A-B\in\mathcal{D} [/ilmath]
- Note that [ilmath]A-B=(A^c\udot B)^c[/ilmath] (this is not true in general, it requires [ilmath]B\subseteq A[/ilmath]Include ven diagram
- As by hypothesis [ilmath]\mathcal{D} [/ilmath] is closed under complements and disjoint unions, we see that [ilmath](A^c\udot B)^c\in\mathcal{D} [/ilmath] thus
- we have [ilmath]A-B\in\mathcal{D} [/ilmath]
- Given [ilmath](A_n)_{n=1}^\infty\subseteq\mathcal{D}[/ilmath] being an increasing sequence of subsets, we have [ilmath]\lim_{n\rightarrow\infty}(A_n)=A[/ilmath] where [ilmath]A:=\bigcup_{n=1}^\infty A_n[/ilmath] (See limit of an increasing sequence of sets for more information)
- Let [ilmath](A_n)_{n=1}^\infty\subseteq\mathcal{D}[/ilmath] be given.
- Define a new sequence of sets, [ilmath](B_n)_{n=1}^\infty[/ilmath] by:
- [ilmath]B_1=A_1[/ilmath]
- [ilmath]B_n=A_n-B_{n-1}[/ilmath]
- This is a pairwise disjoint sequence of sets.
- Now by hypothesis [ilmath]\bigudot_{n=1}^\infty B_n\in\mathcal{D}[/ilmath]
- Note that [math]\bigudot_{n=1}^\infty B_n=\bigcup_{n=1}^\infty A_n[/math]
- So we have [ilmath]\bigcup_{n=1}^\infty A_n\in\mathcal{D} := A[/ilmath], thus the limit is in [ilmath]\mathcal{D} [/ilmath] - as required.
This completes the first half of the proof.
TODO: That second half
Immediate results
- [ilmath]\emptyset\in\mathcal{D} [/ilmath]
Proof:
- As [ilmath]\mathcal{D} [/ilmath] is closed under complements and [ilmath]X\in\mathcal{D} [/ilmath] by definition, [ilmath]X^c\in\mathcal{D} [/ilmath]
- [ilmath]X^c=\emptyset[/ilmath] so [ilmath]\emptyset\in\mathcal{D} [/ilmath]
This completes the proof.
See also
- Dynkin system generated by
- Types of set algebras
- [ilmath]p[/ilmath]-system
- Conditions for a [ilmath]d[/ilmath]-system to be a [ilmath]\sigma[/ilmath]-algebra
Notes
- ↑ Recall this means [ilmath]A_{n}\subseteq A_{n+1} [/ilmath]