Well-ordered set
From Maths
Revision as of 17:49, 24 July 2015 by Alec (Talk | contribs) (Created page with "'''Note:''' This page exists only to contain a simpler, easier view of Well-ordering - until all the concepts can be united anyway. __TOC__ ==Definition== A set {{M|A}} wi...")
Note: This page exists only to contain a simpler, easier view of Well-ordering - until all the concepts can be united anyway.
Contents
Definition
A set [ilmath]A[/ilmath] with an linear ordering [ilmath]<\subseteq A\times A[/ilmath] where if [ilmath](a,b)\in<[/ilmath] we write [ilmath]a<b[/ilmath] is said to be well ordered[1] if:
- Every nonempty subset of [ilmath]A[/ilmath] has a least element
That is to say that:
- [ilmath]\forall X\in\mathcal{P}(A)\exists p\in X\forall x\in X[p=p\vee p<x][/ilmath]
Or more simply:
- [ilmath]\forall X\in\mathcal{P}(A)\exists p\in X\forall x\in X[p\le x][/ilmath][Note 1]
Notes
- ↑ Recall that for every linear ordering [ilmath]>[/ilmath] there exists a corresponding partial ordering [ilmath]\ge[/ilmath] and for every [ilmath]\ge[/ilmath] there exists a corresponding [ilmath]>[/ilmath]
References
- ↑ Topology - James R. Munkres - Second Edition