Discrete metric and topology/Metric space definition
From Maths
< Discrete metric and topology
Revision as of 19:48, 23 July 2015 by Alec (Talk | contribs) (Created page with "Let {{M|X}} be a set. The ''discrete''<ref>Todo - this is how I was taught, can't find source</ref> metric, or ''trivial metric''<ref>Functional Analysis - George Bachman and...")
Let X be a set. The discrete[1] metric, or trivial metric[2] is the metric defined as follows:
- d:X×X→R≥0 with d:(x,y)↦{0if x=y1otherwise
However any strictly positive value will do for the x≠y case. For example we could define d as:
- d:(x,y)↦{0if x=yvotherwise
- Where v is some arbitrary member of R>0[Note 1] - traditionally (as mentioned) v=1 is used.
Notes
- Jump up ↑ Note the strictly greater than 0 requirement for v