Generated subgroup

From Maths
Revision as of 12:39, 12 May 2015 by Alec (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A cyclic subgroup is a group generated by a single element.

Definition

Let [ilmath](G,\times)[/ilmath] be a group, and [ilmath]\{g_1,\cdots,g_n\}\subset G[/ilmath] be a set of elements of [ilmath]G[/ilmath], then the subgroup generated by [ilmath]\{g_i\}_{i=1}^n[/ilmath][1] is given by:

  • [math]\langle g_1,\cdots,g_n\rangle=\{h_1^{p_1}h_2^{p_2}\cdots h_k^{p_k}|k\in\mathbb{N}_0,\ h_i\in \{g_j\}_{j=1}^n,\ p_i\in\{-1,1\}\}[/math]
    Where it is understood that for [ilmath]k=0[/ilmath] the result of the operation on the empty list is [ilmath]e[/ilmath] - the identity element of [ilmath]G[/ilmath]

Informally that is to say that [math]\langle\{g_i\}_{i=1}^n\rangle[/math] is the group that contains all compositions of the [ilmath]g_i[/ilmath] and their inverses, until it becomes closed under composition. This can be done because the [ilmath]g_i\in G[/ilmath] so 'worst case' if you will is that they generate a subgroup equal to the entire group

Proof of claims

Claim: [ilmath]\langle\{g_i\}_{i=1}^n\rangle[/ilmath] is a subgroup of [ilmath]G[/ilmath]


To prove that [ilmath]\langle\{g_i\}_{i=1}^n\rangle[/ilmath] is a subgroup we must show:

  1. The identity is in [ilmath]\langle\{g_i\}_{i=1}^n\rangle[/ilmath]
  2. [ilmath]\langle\{g_i\}_{i=1}^n\rangle[/ilmath] is closed (that is for [ilmath]a,b\in\langle\{g_i\}_{i=1}^n\rangle[/ilmath] we have [ilmath]ab\in\langle\{g_i\}_{i=1}^n\rangle[/ilmath])
  3. [ilmath]\forall x\in\langle\{g_i\}_{i=1}^n\rangle[x^{-1}\in\langle\{g_i\}_{i=1}^n\rangle][/ilmath]


1) Proof that the identity is in [ilmath]\langle\{g_i\}_{i=1}^n\rangle[/ilmath]

This is trivial, as [ilmath]k=0[/ilmath] in the definition "generates" the identity from [ilmath]\{g_i\}_{i=1}^n[/ilmath]


2) Proof that [ilmath]\langle\{g_i\}_{i=1}^n\rangle[/ilmath] is closed


TODO: Proof



3) Proof that for each [ilmath]x\in\langle\{g_i\}_{i=1}^n\rangle[/ilmath] we have [ilmath]x^{-1}\in\langle\{g_i\}_{i=1}^n\rangle[/ilmath]


TODO: Proof


Claim: [ilmath]\langle\{g_i\}_{i=1}^n\rangle[/ilmath] is a normal subgroup of [ilmath]G[/ilmath]





TODO: Prove claims


See also

References

  1. http://www.math.colostate.edu/~hulpke/lectures/m366/generated.pdf