Differential of a smooth map

From Maths
Revision as of 20:58, 13 April 2015 by Alec (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Definition

Given:

  • Two smooth manifolds [ilmath](M,\mathcal{A})[/ilmath] and [ilmath](N,\mathcal{B})[/ilmath] (which may have different dimensions) and are with or without boundary
  • A smooth map [ilmath]F:M\rightarrow N[/ilmath]

For each [ilmath]p\in M[/ilmath] we define a map

  • [math]dF_p:T_p(M)\rightarrow T_{F(p)}N[/math] called the differential of [ilmath]F[/ilmath] at [ilmath]p[/ilmath][1] as
  • (really hard to write - I want a [math]dF_p:v\mapsto(\text{something})[/math])

Given:

  • [math]v\in T_p(M)[/math] that is to say [math]v:C^\infty(M)\rightarrow\mathbb{R}[/math]
  • [math]f\in C^\infty(N)[/math]

The differential acts on [ilmath]f[/ilmath] as follows:

  • [math]dF_p(v)(f) = v(f\circ F)[/math]

See also

References

  1. Introduction to smooth manifolds - John M Lee - Second Edition