Difference between revisions of "Circular motion/Notes"
From Maths
(Created page with "==Acceleration== * {{MM|a(t)\eq p(t)\cdot\left(\frac{r' '(t)}{r(t)}-(\theta'(t))^2\right)+\big(\theta' '(t)\cdot r(t)+2\theta'(t)\cdot r'(t)\big)\cdot\left[\begin{array}{r}-\s...") |
m |
||
Line 12: | Line 12: | ||
#** But notice: | #** But notice: | ||
#*** {{M|a(t)\eq \theta' '(t)\left(\left[−r(t)⋅sin(θ(t))r(t)⋅cos(θ(t)) \right]-\theta' '(t)\cdot p(t)\right)}} | #*** {{M|a(t)\eq \theta' '(t)\left(\left[−r(t)⋅sin(θ(t))r(t)⋅cos(θ(t)) \right]-\theta' '(t)\cdot p(t)\right)}} | ||
− | #***: {{M|\eq \theta' '(t)\left(\left[\begin{array}{r} - | + | #***: {{M|\eq \theta' '(t)\left(\left[\begin{array}{r} -p_y(t)\\p_x(t)\end{array}\right]-\theta' '(t)\cdot p(t)\right)}} |
There must be a geometric interpretation for this! As the vector here is {{M|p(t)}} reflected in the line {{M|x\eq 0}}! | There must be a geometric interpretation for this! As the vector here is {{M|p(t)}} reflected in the line {{M|x\eq 0}}! | ||
+ | * {{XXX|This is wrong actually}} as the {{M|x}} component comes from cos in {{M|p(t)}}, not sin. Which is not a reflection in {{M|x\eq 0}}, a matrix might be able to represent this linear combination better | ||
+ | ** I've corrected the formula [[User:Alec|Alec]] ([[User talk:Alec|talk]]) 18:56, 13 September 2018 (UTC) |
Latest revision as of 18:56, 13 September 2018
Acceleration
- a(t)=p(t)⋅(r″(t)r(t)−(θ′(t))2)+(θ″(t)⋅r(t)+2θ′(t)⋅r′(t))⋅[−sin(θ(t))cos(θ(t))], or:
- substituting in p(t) by it's definition:
- a(t)=(r″(t)r(t)−(θ′(t))2)⋅[r(t)⋅cos(θ(t))r(t)⋅sin(θ(t))]+(θ″(t)⋅r(t)+2θ′(t)⋅r′(t))⋅[−sin(θ(t))cos(θ(t))]
- However in many special cases it is useful to consider the first form with p(t) in it.
- a(t)=(r″(t)r(t)−(θ′(t))2)⋅[r(t)⋅cos(θ(t))r(t)⋅sin(θ(t))]+(θ″(t)⋅r(t)+2θ′(t)⋅r′(t))⋅[−sin(θ(t))cos(θ(t))]
- substituting in p(t) by it's definition:
Special cases
- unchanging radius, r(t):=r0∈R>0
- obviously, now r′(t)=0 and r″(t)=0, thus:
- a(t)=−(θ″(t))2⋅p(t)+(θ″(t)⋅r(t))⋅[−sin(θ(t))cos(θ(t))]
- =θ″(t)(r(t)⋅[−sin(θ(t))cos(θ(t))]−θ″(t)⋅p(t))
- But notice:
- a(t)=θ″(t)([−r(t)⋅sin(θ(t))r(t)⋅cos(θ(t))]−θ″(t)⋅p(t))
- =θ″(t)([−py(t)px(t)]−θ″(t)⋅p(t))
- a(t)=θ″(t)([−r(t)⋅sin(θ(t))r(t)⋅cos(θ(t))]−θ″(t)⋅p(t))
- a(t)=−(θ″(t))2⋅p(t)+(θ″(t)⋅r(t))⋅[−sin(θ(t))cos(θ(t))]
- obviously, now r′(t)=0 and r″(t)=0, thus:
There must be a geometric interpretation for this! As the vector here is p(t) reflected in the line x=0!