Difference between revisions of "Circular motion/Notes"

From Maths
Jump to: navigation, search
(Created page with "==Acceleration== * {{MM|a(t)\eq p(t)\cdot\left(\frac{r' '(t)}{r(t)}-(\theta'(t))^2\right)+\big(\theta' '(t)\cdot r(t)+2\theta'(t)\cdot r'(t)\big)\cdot\left[\begin{array}{r}-\s...")
(No difference)

Revision as of 18:54, 13 September 2018

Acceleration

  • a(t)=p(t)(r, or:
    • substituting in p(t) by it's definition:
      • a(t)\eq \left(\frac{r' '(t)}{r(t)}-(\theta'(t))^2\right)\cdot\left[\begin{array}{r}r(t)\cdot\cos(\theta(t)) \\ r(t)\cdot\sin(\theta(t))\end{array}\right]+\big(\theta' '(t)\cdot r(t)+2\theta'(t)\cdot r'(t)\big)\cdot\left[\begin{array}{r}-\sin(\theta(t)) \\ \cos(\theta(t))\end{array}\right]
      • However in many special cases it is useful to consider the first form with p(t) in it.

Special cases

  1. unchanging radius, r(t):\eq r_0\in\mathbb{R}_{>0}
    • obviously, now r'(t)\eq 0 and r' '(t)\eq 0, thus:
      • a(t)\eq -(\theta' '(t))^2\cdot p(t)+\big(\theta' '(t)\cdot r(t)\big)\cdot\left[\begin{array}{r}-\sin(\theta(t)) \\ \cos(\theta(t))\end{array}\right]
        \eq \theta' '(t)\left(r(t)\cdot\left[\begin{array}{r}-\sin(\theta(t)) \\ \cos(\theta(t))\end{array}\right]-\theta' '(t)\cdot p(t)\right)
      • But notice:
        • a(t)\eq \theta' '(t)\left(\left[\begin{array}{r}-r(t)\cdot\sin(\theta(t)) \\ r(t)\cdot\cos(\theta(t))\end{array}\right]-\theta' '(t)\cdot p(t)\right)
          \eq \theta' '(t)\left(\left[\begin{array}{r} -p_x(t)\\p_y(t)\end{array}\right]-\theta' '(t)\cdot p(t)\right)

There must be a geometric interpretation for this! As the vector here is p(t) reflected in the line x\eq 0!