Difference between revisions of "Expectation of the geometric distribution"
(Saving work) |
(Finishing proof, there's case extension to be done as there's no reason it can't cover p in [0,1) for case 2, rather than just (0,1) as it does now) |
||
Line 1: | Line 1: | ||
{{Stub page|grade=A|msg=Finish in morning}} | {{Stub page|grade=A|msg=Finish in morning}} | ||
− | {{ProbMacros}} | + | {{ProbMacros}}{{M|\newcommand{\d}[0]{\mathrm{d} } }} |
__TOC__ | __TOC__ | ||
==Statement== | ==Statement== | ||
Line 33: | Line 33: | ||
We now consider the {{M|S'_n}} terms: | We now consider the {{M|S'_n}} terms: | ||
* {{MM|S'_n\eq pS_n\eq p\left(\sum^n_{k\eq 1}kq^{k-1}\right)}} - {{0^0}} comes up here | * {{MM|S'_n\eq pS_n\eq p\left(\sum^n_{k\eq 1}kq^{k-1}\right)}} - {{0^0}} comes up here | ||
− | ===Case 2: {{M|p\in (0,1)\subseteq\mathbb{R} }}=== | + | ===Case 2: {{M|p\in (0,1)\subseteq\mathbb{R} }} - {{XXX|EXTENSION}}=== |
− | + | : {{XXX|This case can be extended to {{M|p\in (0,1]}} and should be}} as there's no reason we can't cope with the {{M|q\eq 0}} case - {{XXX|SORT THIS OUT}} | |
− | + | '''[[Lemmas|Lemmas used]]:''' | |
+ | # {{MM|\frac{\mathrm{d} }{\mathrm{d}q}\Big[q^k\Big]\Bigg\vert_q\eq kq^{k-1} }} which is the first result covered in [[differentiation]]<ref group="Note">I'd really like to link to something here so {{XXX|Link to the actual result!}}</ref> | ||
+ | # {{MM|\sum^n_{k\eq 1}r^{k-1}\eq \frac{1-r^n}{1-r} }} (from the result on the ''[[geometric series]]'' page), and, | ||
+ | #* Note that {{MM|\sum_{k\eq 1}^nr^k\eq r\sum^n_{k\eq 1}r^{k-1} }} so we will really use: | ||
+ | #** {{MM|\sum^n_{k\eq 1}r^k\eq r\frac{1-r^n}{1-r} }} | ||
+ | |||
+ | |||
+ | '''Proof:''' | ||
+ | * Let {{M|p\in}}[[open interval|{{M|(0,1)}}]]{{M|\subseteq}}[[Reals|{{M|\mathbb{R} }}]] be given, and let {{M|X\sim}}[[Geometric distribution|{{M|\text{Geo} }}]]{{M|(p)}} so {{M|\P{X\eq k}:\eq (1-p)^{k-1}p}} for {{M|k\in\mathbb{N}_{\ge 1} }}, now: | ||
+ | ** {{MM|\E{X}:\eq\sum^\infty_{k\eq 1}k\cdot\P{X\eq k}\eq \sum^\infty_{k\eq 1}k(1-p)^{k-1}p\eq p\sum^\infty_{k\eq 1}kq^{k-1} }} where we have substituted {{M|q^{k-1} }} for {{M|(1-p)^{k-1} }} at the end there. | ||
+ | *** We use the first lemma described above to observe that {{MM|kq^{k-1}\eq\frac{\d }{\d q}\Big[q^k\Big]\Big\vert_q}}, thus: | ||
+ | **** {{MM|\E{X}\eq p\sum^\infty_{k\eq 1}\frac{\d}{\d q}\Big[q^k\Big]\Big\vert_q}} | ||
+ | ****: {{MM|\eq p\cdot\left(\frac{\d}{\d q}\left[\sum^\infty_{k\eq 1}q^k\middle]\right\vert_q\right)}}<ref group="Note" name="CalculusSum"/> | ||
+ | ** We now work on the expression: {{MM|\sum^\infty_{k\eq 1}q^k}}, taking it as {{MM|\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) }} and operate on the {{MM|\sum^n_{k\eq 1}q^k}} first | ||
+ | *** By the ''second lemma'' above: | ||
+ | **** {{MM|\sum^n_{k\eq 1}q^k\eq q\frac{1-q^n}{1-q} }} | ||
+ | ****: {{MM|\eq \frac{q}{1-q}\cdot(1-q^n) }} | ||
+ | *** Now we consider {{MM|\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) }}, | ||
+ | **** {{MM|\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) \eq \lim_{n\rightarrow\infty}\left(\frac{q}{1-q}\cdot(1-q^n) \right) }} | ||
+ | ****: {{MM|\eq\frac{q}{1-q}\cdot\lim_{n\rightarrow\infty}\Big((1-q^n)\Big) }} | ||
+ | **** Let us operate on the {{MM|\lim_{n\rightarrow\infty}\Big((1-q^n)\Big) }} now | ||
+ | ***** We have three cases, {{M|q\eq 0}}, {{M|q\in(0,1)}} and {{M|q\eq 1}} - {{Notice|But as we are explicitly in the {{M|q\in(0,1)}} case we don't need to consider them really, we do so for demonstration purposes only}} | ||
+ | ****: All of these are applications of [[limit of integer powers of a real value]] | ||
+ | ****:# {{M|q\eq 0}} then obviously {{M|0^n}} for {{M|n\in\mathbb{N}_{\ge 1} }} is always {{M|0}} (with [[0^0|{{M|0^0}}]] "disputed" but not relevant here) so | ||
+ | ****:#* {{M|\lim_{n\rightarrow\infty}(1-q^n)\eq 1-0\eq 1}} | ||
+ | ****:# {{M|q\in(0,1)}} then {{M|q^n}} gets smaller as {{M|n}} increases so {{M|q^n\rightarrow 0}} so {{M|1-q^n\rightarrow 1}}, thus | ||
+ | ****:#* {{M|\lim_{n\rightarrow\infty}(1-q^n)\eq 1-0\eq 1}} also | ||
+ | ****:# {{M|q\eq 1}} then {{M|q^n\eq 1}} always so | ||
+ | ****:#* {{M|\lim_{n\rightarrow\infty}(1-q^n)\eq 1-1\eq 0}} | ||
+ | ***** So we see that {{M|q\in [0,1) }}<ref group="Note">I'm extending the range slightly but as {{M|(0,1)\subseteq [0,1)}} we're fine to do so</ref> means that {{M|\lim_{n\rightarrow\infty}(1-q^n)\eq 1}} | ||
+ | **** Substituting our findings we see for the relevant range of this case that: | ||
+ | ***** {{MM|\frac{q}{1-q}\cdot\lim_{n\rightarrow\infty}\Big((1-q^n)\Big) \eq \frac{q}{1-q} }} | ||
+ | **** Thus: | ||
+ | ***** {{MM|\sum^\infty_{k\eq 1}q^k:\eq \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) \eq \frac{q}{1-q} }} | ||
+ | ** We combine this into our expression for {{M|\E{X} }}: | ||
+ | *** {{MM|\E{X}\eq p\cdot\left(\frac{\d}{\d q}\left[\sum^\infty_{k\eq 1}q^k\middle]\right\vert_q\right)}} | ||
+ | ***: {{MM|\eq p\cdot\frac{\d}{\d q}\left[\frac{q}{1-q}\middle]\right\vert_q}} | ||
+ | *** We now operate on {{M|\frac{\d}{\d q}\big[q\cdot (1-q)^{-1}\big]\big\vert_q }} and - as writing it this way implies - will use the [[product rule]]: | ||
+ | **** {{MM|\frac{\d}{\d q}\Big[q\cdot (1-q)^{-1}\Big]\Big\vert_q \eq q\frac{\d}{\d q}\left[(1-q)^{-1}\middle]\right\vert_q+\frac{1}{1-q}\frac{\d}{\d q}\left[q\right]\Big\vert_q}} | ||
+ | ****: {{MM|\eq\frac{-q}{(1-q)^2}\cdot\frac{\d}{\d q}\Big[(1-q)\Big]\Big\vert_q +\frac{1}{1-q} }} - notice the [[chain rule|chain ruling]] being applied here | ||
+ | ****: {{MM|\eq\frac{-q}{(1-q)^2}(-1) +\frac{1}{1-q} }} | ||
+ | ****: {{MM|\eq \frac{1}{1-q}\left(1+\frac{q}{1-q}\right) }} | ||
+ | ****: {{MM|\eq \frac{1}{1-q}\left(\frac{1-q}{1-q}+\frac{q}{1-q}\right) }} | ||
+ | ****: {{MM|\eq \frac{1}{1-q}\left(\frac{1}{1-q}\right) }} | ||
+ | ****: {{MM|\eq\frac{1}{(1-q)^2} }} or {{M|\eq (1-q)^{-2} }} | ||
+ | **** Finally: {{MM|\frac{\d}{\d q}\big[q\cdot (1-q)^{-1}\big]\big\vert_q \eq \frac{1}{(1-q)^2} }} | ||
+ | ***** So now we have: {{MM|\E{X} \eq p\cdot\frac{\d}{\d q}\left[\frac{q}{1-q}\middle]\right\vert_q\eq p\frac{1}{(1-q)^2} }} | ||
+ | *** Lastly we operate on {{MM|\E{X}\eq p\frac{1}{(1-q)^2} }} | ||
+ | **** Recall that {{M|q:\eq 1-p}} so {{M|1-q\eq 1-(1-p)\eq 1-1+p\eq p}} - we have {{M|1-q\eq p}} now, substitute this in and we see: | ||
+ | ***** {{MM|\E{X}\eq p\frac{1}{p^2} }} | ||
+ | *****: {{MM|\eq \frac{1}{p} }} | ||
+ | ** So we have {{MM|\E{X}\eq \frac{1}{p} }} given our value of {{M|p}} | ||
+ | * Since our choice of {{M|p\in(0,1)}} was arbitrary we have shown: | ||
+ | ** {{MM|\forall p\in(0,1)\left[\E{\text{Geo}(p)}\eq\frac{1}{p}\right] }} - as required | ||
==Notes== | ==Notes== | ||
− | <references group="Note"/> | + | <references group="Note"> |
− | {{Theorem Of|Probability|Elementary Probability|Statistics}}[[Category: | + | <ref group="Note" name="CalculusSum">Remember {{MM|\sum^\infty_{k\eq 1}a_k}} is just short hand for {{MM|\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}a_k\right)}} - see [[limits]] and [[limit of a series]] - and remember that {{MM|\frac{\d}{\d x}\Big[f(x)\Big]\Big\vert_x+\frac{\d}{\d x}\Big[g(x)\Big]\Big\vert_x\eq\frac{\d}{\d x}\Big[f(x)+g(x)\Big]\Big\vert_x}} - as per [[linearity of the derivative]]. |
+ | * {{XXX|More links?}}</ref> | ||
+ | </references> | ||
+ | {{Theorem Of|Probability|Elementary Probability|Statistics}}[[Category:Expectation Calculations]] |
Latest revision as of 02:55, 16 January 2018
Contents
Statement
Let [ilmath]X\sim[/ilmath][ilmath]\text{Geo} [/ilmath][ilmath](p)[/ilmath] where [ilmath]p[/ilmath] is the probability of any trial being a success, and each trial is i.i.d as [ilmath]X_i\sim[/ilmath][ilmath]\text{Borv} [/ilmath][ilmath](p)[/ilmath], from this we have:
- For [ilmath]k\in\mathbb{N}_{\ge 1} [/ilmath] that [ilmath]\P{X\eq k}\eq p(1-p)^{k-1} [/ilmath]
We now define [ilmath]q:\eq 1-p[/ilmath] as this will simplify calculations further on, meaning that now:
- For [ilmath]k\in\mathbb{N}_{\ge 1} [/ilmath] that [ilmath]\P{X\eq k}\eq pq^{k-1} [/ilmath]
- The expectation of [ilmath]X[/ilmath] is:
- We claim that that [ilmath]\E{X}\eq\frac{1}{p} [/ilmath] for [ilmath]p\in[/ilmath][ilmath](0,1][/ilmath][ilmath]\subseteq\mathbb{R} [/ilmath] and undefined for [ilmath]p\eq 0[/ilmath]
To do so we will consider the 3 cases, [ilmath]p\eq 0[/ilmath], [ilmath]p\in (0,1)\subseteq\mathbb{R} [/ilmath] and [ilmath]p\eq 1[/ilmath] separately and in reverse of this order.
See also
Proof
We introduce the following for short.
- [math]S'_n:\eq\sum^n_{k\eq 1}kpq^{k-1} [/math] - this forms the sequence used in the limit - which is a series.
- Thus [math]\E{X}\eq\lim_{n\rightarrow\infty}\Big(S'_n\Big)[/math]
- [math]S_n:\eq\sum^n_{k\eq 1}kq^{k-1} [/math]
- This comes from the sequence inside the limit, [math]\sum^n_{k\eq 1}k\P{X\eq k}\eq\sum^n_{k\eq 1}kpq^{k-1}\eq p\sum^n_{k\eq 1} kq^{k-1} \eq pS_n[/math], so:
- [math]\E{X}\eq\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}k\P{X\eq k}\right)\eq\lim_{n\rightarrow\infty}\Big(pS_n\Big)[/math]
- This comes from the sequence inside the limit, [math]\sum^n_{k\eq 1}k\P{X\eq k}\eq\sum^n_{k\eq 1}kpq^{k-1}\eq p\sum^n_{k\eq 1} kq^{k-1} \eq pS_n[/math], so:
Notice that [ilmath]S'_n\eq pS_n[/ilmath] - introduced purely to save typing.
Case 1: [ilmath]p\eq 1[/ilmath]
Notice that in this case, [ilmath]q\eq 1-p\eq 0[/ilmath].
We now consider the [ilmath]S'_n[/ilmath] terms:
- [math]S'_n\eq pS_n\eq p\left(\sum^n_{k\eq 1}kq^{k-1}\right)[/math] - [ilmath]0^0[/ilmath] comes up here
Case 2: [ilmath]p\in (0,1)\subseteq\mathbb{R} [/ilmath] - TODO: EXTENSION
- TODO: This case can be extended to [ilmath]p\in (0,1][/ilmath] and should beas there's no reason we can't cope with the [ilmath]q\eq 0[/ilmath] case -TODO: SORT THIS OUT
- [math]\frac{\mathrm{d} }{\mathrm{d}q}\Big[q^k\Big]\Bigg\vert_q\eq kq^{k-1} [/math] which is the first result covered in differentiation[Note 1]
- [math]\sum^n_{k\eq 1}r^{k-1}\eq \frac{1-r^n}{1-r} [/math] (from the result on the geometric series page), and,
- Note that [math]\sum_{k\eq 1}^nr^k\eq r\sum^n_{k\eq 1}r^{k-1} [/math] so we will really use:
- [math]\sum^n_{k\eq 1}r^k\eq r\frac{1-r^n}{1-r} [/math]
- Note that [math]\sum_{k\eq 1}^nr^k\eq r\sum^n_{k\eq 1}r^{k-1} [/math] so we will really use:
Proof:
- Let [ilmath]p\in[/ilmath][ilmath](0,1)[/ilmath][ilmath]\subseteq[/ilmath][ilmath]\mathbb{R} [/ilmath] be given, and let [ilmath]X\sim[/ilmath][ilmath]\text{Geo} [/ilmath][ilmath](p)[/ilmath] so [ilmath]\P{X\eq k}:\eq (1-p)^{k-1}p[/ilmath] for [ilmath]k\in\mathbb{N}_{\ge 1} [/ilmath], now:
- [math]\E{X}:\eq\sum^\infty_{k\eq 1}k\cdot\P{X\eq k}\eq \sum^\infty_{k\eq 1}k(1-p)^{k-1}p\eq p\sum^\infty_{k\eq 1}kq^{k-1} [/math] where we have substituted [ilmath]q^{k-1} [/ilmath] for [ilmath](1-p)^{k-1} [/ilmath] at the end there.
- We use the first lemma described above to observe that [math]kq^{k-1}\eq\frac{\d }{\d q}\Big[q^k\Big]\Big\vert_q[/math], thus:
- [math]\E{X}\eq p\sum^\infty_{k\eq 1}\frac{\d}{\d q}\Big[q^k\Big]\Big\vert_q[/math]
- [math]\eq p\cdot\left(\frac{\d}{\d q}\left[\sum^\infty_{k\eq 1}q^k\middle]\right\vert_q\right)[/math][Note 2]
- [math]\E{X}\eq p\sum^\infty_{k\eq 1}\frac{\d}{\d q}\Big[q^k\Big]\Big\vert_q[/math]
- We use the first lemma described above to observe that [math]kq^{k-1}\eq\frac{\d }{\d q}\Big[q^k\Big]\Big\vert_q[/math], thus:
- We now work on the expression: [math]\sum^\infty_{k\eq 1}q^k[/math], taking it as [math]\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) [/math] and operate on the [math]\sum^n_{k\eq 1}q^k[/math] first
- By the second lemma above:
- [math]\sum^n_{k\eq 1}q^k\eq q\frac{1-q^n}{1-q} [/math]
- [math]\eq \frac{q}{1-q}\cdot(1-q^n) [/math]
- [math]\sum^n_{k\eq 1}q^k\eq q\frac{1-q^n}{1-q} [/math]
- Now we consider [math]\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) [/math],
- [math]\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) \eq \lim_{n\rightarrow\infty}\left(\frac{q}{1-q}\cdot(1-q^n) \right) [/math]
- [math]\eq\frac{q}{1-q}\cdot\lim_{n\rightarrow\infty}\Big((1-q^n)\Big) [/math]
- Let us operate on the [math]\lim_{n\rightarrow\infty}\Big((1-q^n)\Big) [/math] now
- We have three cases, [ilmath]q\eq 0[/ilmath], [ilmath]q\in(0,1)[/ilmath] and [ilmath]q\eq 1[/ilmath] - But as we are explicitly in the [ilmath]q\in(0,1)[/ilmath] case we don't need to consider them really, we do so for demonstration purposes only
- All of these are applications of limit of integer powers of a real value
- [ilmath]q\eq 0[/ilmath] then obviously [ilmath]0^n[/ilmath] for [ilmath]n\in\mathbb{N}_{\ge 1} [/ilmath] is always [ilmath]0[/ilmath] (with [ilmath]0^0[/ilmath] "disputed" but not relevant here) so
- [ilmath]\lim_{n\rightarrow\infty}(1-q^n)\eq 1-0\eq 1[/ilmath]
- [ilmath]q\in(0,1)[/ilmath] then [ilmath]q^n[/ilmath] gets smaller as [ilmath]n[/ilmath] increases so [ilmath]q^n\rightarrow 0[/ilmath] so [ilmath]1-q^n\rightarrow 1[/ilmath], thus
- [ilmath]\lim_{n\rightarrow\infty}(1-q^n)\eq 1-0\eq 1[/ilmath] also
- [ilmath]q\eq 1[/ilmath] then [ilmath]q^n\eq 1[/ilmath] always so
- [ilmath]\lim_{n\rightarrow\infty}(1-q^n)\eq 1-1\eq 0[/ilmath]
- [ilmath]q\eq 0[/ilmath] then obviously [ilmath]0^n[/ilmath] for [ilmath]n\in\mathbb{N}_{\ge 1} [/ilmath] is always [ilmath]0[/ilmath] (with [ilmath]0^0[/ilmath] "disputed" but not relevant here) so
- So we see that [ilmath]q\in [0,1) [/ilmath][Note 3] means that [ilmath]\lim_{n\rightarrow\infty}(1-q^n)\eq 1[/ilmath]
- Substituting our findings we see for the relevant range of this case that:
- [math]\frac{q}{1-q}\cdot\lim_{n\rightarrow\infty}\Big((1-q^n)\Big) \eq \frac{q}{1-q} [/math]
- Thus:
- [math]\sum^\infty_{k\eq 1}q^k:\eq \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) \eq \frac{q}{1-q} [/math]
- [math]\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}q^k\right) \eq \lim_{n\rightarrow\infty}\left(\frac{q}{1-q}\cdot(1-q^n) \right) [/math]
- By the second lemma above:
- We combine this into our expression for [ilmath]\E{X} [/ilmath]:
- [math]\E{X}\eq p\cdot\left(\frac{\d}{\d q}\left[\sum^\infty_{k\eq 1}q^k\middle]\right\vert_q\right)[/math]
- [math]\eq p\cdot\frac{\d}{\d q}\left[\frac{q}{1-q}\middle]\right\vert_q[/math]
- We now operate on [ilmath]\frac{\d}{\d q}\big[q\cdot (1-q)^{-1}\big]\big\vert_q [/ilmath] and - as writing it this way implies - will use the product rule:
- [math]\frac{\d}{\d q}\Big[q\cdot (1-q)^{-1}\Big]\Big\vert_q \eq q\frac{\d}{\d q}\left[(1-q)^{-1}\middle]\right\vert_q+\frac{1}{1-q}\frac{\d}{\d q}\left[q\right]\Big\vert_q[/math]
- [math]\eq\frac{-q}{(1-q)^2}\cdot\frac{\d}{\d q}\Big[(1-q)\Big]\Big\vert_q +\frac{1}{1-q} [/math] - notice the chain ruling being applied here
- [math]\eq\frac{-q}{(1-q)^2}(-1) +\frac{1}{1-q} [/math]
- [math]\eq \frac{1}{1-q}\left(1+\frac{q}{1-q}\right) [/math]
- [math]\eq \frac{1}{1-q}\left(\frac{1-q}{1-q}+\frac{q}{1-q}\right) [/math]
- [math]\eq \frac{1}{1-q}\left(\frac{1}{1-q}\right) [/math]
- [math]\eq\frac{1}{(1-q)^2} [/math] or [ilmath]\eq (1-q)^{-2} [/ilmath]
- Finally: [math]\frac{\d}{\d q}\big[q\cdot (1-q)^{-1}\big]\big\vert_q \eq \frac{1}{(1-q)^2} [/math]
- So now we have: [math]\E{X} \eq p\cdot\frac{\d}{\d q}\left[\frac{q}{1-q}\middle]\right\vert_q\eq p\frac{1}{(1-q)^2} [/math]
- [math]\frac{\d}{\d q}\Big[q\cdot (1-q)^{-1}\Big]\Big\vert_q \eq q\frac{\d}{\d q}\left[(1-q)^{-1}\middle]\right\vert_q+\frac{1}{1-q}\frac{\d}{\d q}\left[q\right]\Big\vert_q[/math]
- Lastly we operate on [math]\E{X}\eq p\frac{1}{(1-q)^2} [/math]
- Recall that [ilmath]q:\eq 1-p[/ilmath] so [ilmath]1-q\eq 1-(1-p)\eq 1-1+p\eq p[/ilmath] - we have [ilmath]1-q\eq p[/ilmath] now, substitute this in and we see:
- [math]\E{X}\eq p\frac{1}{p^2} [/math]
- [math]\eq \frac{1}{p} [/math]
- [math]\E{X}\eq p\frac{1}{p^2} [/math]
- Recall that [ilmath]q:\eq 1-p[/ilmath] so [ilmath]1-q\eq 1-(1-p)\eq 1-1+p\eq p[/ilmath] - we have [ilmath]1-q\eq p[/ilmath] now, substitute this in and we see:
- [math]\E{X}\eq p\cdot\left(\frac{\d}{\d q}\left[\sum^\infty_{k\eq 1}q^k\middle]\right\vert_q\right)[/math]
- So we have [math]\E{X}\eq \frac{1}{p} [/math] given our value of [ilmath]p[/ilmath]
- [math]\E{X}:\eq\sum^\infty_{k\eq 1}k\cdot\P{X\eq k}\eq \sum^\infty_{k\eq 1}k(1-p)^{k-1}p\eq p\sum^\infty_{k\eq 1}kq^{k-1} [/math] where we have substituted [ilmath]q^{k-1} [/ilmath] for [ilmath](1-p)^{k-1} [/ilmath] at the end there.
- Since our choice of [ilmath]p\in(0,1)[/ilmath] was arbitrary we have shown:
- [math]\forall p\in(0,1)\left[\E{\text{Geo}(p)}\eq\frac{1}{p}\right] [/math] - as required
Notes
- ↑ I'd really like to link to something here so TODO: Link to the actual result!
- ↑ Remember [math]\sum^\infty_{k\eq 1}a_k[/math] is just short hand for [math]\lim_{n\rightarrow\infty}\left(\sum^n_{k\eq 1}a_k\right)[/math] - see limits and limit of a series - and remember that [math]\frac{\d}{\d x}\Big[f(x)\Big]\Big\vert_x+\frac{\d}{\d x}\Big[g(x)\Big]\Big\vert_x\eq\frac{\d}{\d x}\Big[f(x)+g(x)\Big]\Big\vert_x[/math] - as per linearity of the derivative.
- TODO: More links?
-
- ↑ I'm extending the range slightly but as [ilmath](0,1)\subseteq [0,1)[/ilmath] we're fine to do so
- XXX Todo
- Stub pages
- Theorems
- Theorems, lemmas and corollaries
- Probability Theorems
- Probability Theorems, lemmas and corollaries
- Probability
- Elementary Probability Theorems
- Elementary Probability Theorems, lemmas and corollaries
- Elementary Probability
- Statistics Theorems
- Statistics Theorems, lemmas and corollaries
- Statistics
- Expectation Calculations