Difference between revisions of "Surjection/Definition"
From Maths
(Created page with "Given a function {{M|f:X\rightarrow Y}}, we say {{M|f}} is ''surjective'' if: * <math>\forall y\in Y\exists x\in X[f(x)=y]</math> * Equivalently <math>\forall y\i...") |
(No difference)
|
Latest revision as of 17:42, 10 May 2015
Given a function [ilmath]f:X\rightarrow Y[/ilmath], we say [ilmath]f[/ilmath] is surjective if:
- [math]\forall y\in Y\exists x\in X[f(x)=y][/math]
- Equivalently [math]\forall y\in Y[/math] the set [math]f^{-1}(y)[/math] is non-empty. That is [math]f^{-1}(y)\ne\emptyset[/math]