Difference between revisions of "Limit"

From Maths
Jump to: navigation, search
(Created page with " ==Definition== A limit allows us to sidestep the notion of infinity and to allow us to potentially extend the domain of functions {| class="wikitable" border="1" |- ! Class...")
(No difference)

Revision as of 11:14, 28 April 2015

Definition

A limit allows us to sidestep the notion of infinity and to allow us to potentially extend the domain of functions

Class Name Form Meaning
Limit of a sequence converging to a lim
  • \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies |a_n-a|<\epsilon] - first form
  • \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies d(a_n,a)<\epsilon] - Metric space (X,d)
  • \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}\exists U\in\mathcal{J}[a\in U\wedge(n> N \implies a_n\in U)] - Topological space (X,\mathcal{J})
Tending towards +\infty \lim_{n\rightarrow\infty}(a_n)=+\infty
  • \forall C>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies a_n> C]
Tending towards -\infty \lim_{n\rightarrow\infty}(a_n)=-\infty
  • \forall C<0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies a_n< C]
Diverging to \infty \lim_{n\rightarrow\infty}(a_n)=\infty
  • \forall C>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies |a_n|> C]

(See Infinity)