Difference between revisions of "Example:A smooth function that is not real analytic"
From Maths
(Saving work) |
m |
||
Line 6: | Line 6: | ||
We will show this [[function]] is ''not'' [[real-analytic]] at {{M|0\in\mathbb{R} }} but is [[smooth]]. | We will show this [[function]] is ''not'' [[real-analytic]] at {{M|0\in\mathbb{R} }} but is [[smooth]]. | ||
==Proof== | ==Proof== | ||
+ | ===For {{M|x<0}}, {{M|f}} is smooth=== | ||
+ | This is trivial, as {{M|f\vert_{\mathbb{R}_{<0} }\ident 0}} | ||
+ | * {{XXX|The derivative of a constant is 0, the derivative of that is 0, and so forth - link to corresponding pages}} | ||
+ | ===For {{M|x>0}}, {{M|f}} is smooth=== | ||
+ | We will show a slightly different result. | ||
+ | * Let {{M|P_m(y)}} be a [[polynomial]] of {{link|order|polynomial}} {{M|m}} in the invariant {{M|y}}. {{M|p_m:\mathbb{R}\rightarrow\mathbb{R} }} is the map with {{M|p_m:y\mapsto p(y)}} meaning {{link|evaluation|polynomial}} at {{M|y\in\mathbb{R} }}. | ||
+ | We claim that: | ||
+ | * {{MM|\frac{\mathrm{d}^kf}{\mathrm{d}x^k}\eq p_{2k}(\tfrac{1}{x})\mathrm{e}^{-\frac{1}{x} } }} | ||
+ | ====Proof==== | ||
+ | To avoid any ''potential'' ambiguities {{caveat|I'm not sure whether or not there'd be problems with a 0 {{link|degree|polynomial}} polynomial, but I want to sidestep it}} we shall prove this by induction starting from {{M|k\eq 1}}. | ||
+ | The proof shall proceed as follows: | ||
+ | # Show that {{MM|\frac{df}{dx}\eq p_2(\tfrac{1}{x})e^{-\frac{1}{x} } }} | ||
+ | # Assume that {{MM|\frac{d^kf}{dx^k}\eq p_{2k}(\tfrac{1}{x})e^{-\frac{1}{x} } }} holds | ||
+ | # Show that {{MM|\left(\frac{d^kf}{dx^k}\eq p_{2k}(\tfrac{1}{x})e^{-\frac{1}{x} }\right)\implies\left(\frac{d^{k+1}f}{dx^{k+1} }\eq p_{2(k+1)}(\tfrac{1}{x})e^{-\frac{1}{x} }\right)}} | ||
+ | #* I.E. show that the RHS of this is true (as by the nature of [[logical implication]] if the LHS is true - which we assume it is - then for it to imply the RHS the RHS must also be true. | ||
+ | '''Proof:''' | ||
+ | : {{Green highlight|msg=Remember that here we are explicitly dealing with the {{M|x\in\mathbb{R}_{>0} }} case. We are basically considering {{M|f:\mathbb{R}_{>0}\rightarrow\mathbb{R} }} by {{M|f:x\mapsto e^{-\frac{1}{x} } }}}} | ||
+ | # Show that {{M|\frac{df}{dx}\eq p_2(\frac{1}{x})e^{-\frac{1}{x} } }} {{Caveat|I'm experimenting with differentiation notation here}}<ref group="Note">The details are as follows: | ||
+ | * {{MM|\frac{df}{dx} }} is itself a function that takes {{M|x'}} to {{MM|\frac{df}{dx}\Big\vert_{x\eq x'} }} | ||
+ | * {{MM|\frac{df}{dx}\Big\vert_x}} is another way of writing {{MM|\frac{df}{dx} }} - anywhere where the variable we are differentiating with respect to is where we are differentiating at invokes this, and is actually a function in the "at" part. | ||
+ | * {{MM|\frac{df}{dx}\Big\vert_{x\eq z} }} is an expression for the derivative of {{M|f}} (wrt {{M|x}}) - at {{M|z}} - note that it is an expression - not a constant: | ||
+ | ** For example {{MM|\frac{d}{dx}x^3\Big\vert_{x\eq t}\eq 3t^2}} so {{MM|\frac{d}{dt}\frac{d}{dx}x^3\Big\vert_{x\eq t}\Big\vert_{t}\eq 6t}} | ||
+ | We may also use: | ||
+ | * {{MM|\frac{d}{dt}\Big[\text{whatever}\Big]}} to mean {{MM|\frac{d}{dt}\text{whatever}\Big\vert_t}} | ||
+ | * {{MM|\frac{d}{dt}\Big[\text{whatever}\Big]_{t} }} to mean {{MM|\frac{d}{dt}\text{whatever}\Big\vert_t}}, and | ||
+ | * {{MM|\frac{d}{dt}\Big[\text{whatever}\Big]_{t\eq p} }} to mean {{MM|\frac{d}{dt}\text{whatever}\Big\vert_{t\eq p} }} | ||
+ | Rather than: | ||
+ | * {{MM|\frac{d}{dt}\Big[\text{whatever}\Big]\Big\vert_{t\eq p} }} for example</ref> | ||
+ | #* {{MM|\frac{df}{dx}\Big\vert_x\eq\frac{d}{dz}e^{z}\Big\vert_{z\eq -\frac{1}{x} }\cdot\frac{d}{dx}-(x^{-1})\Big\vert_x}}{{MM|\eq e^{-\frac{1}{x} }\cdot(-1)\cdot\frac{d}{dx}x^{-1}\Big\vert_x}}{{MM|\eq x^{-2}e^{-\frac{1}{x} } }} | ||
+ | #* We see {{MM|\frac{df}{dx}\eq \left(\tfrac{1}{x}\right)^2e^{-\frac{1}{x} } }} or {{MM|\frac{df}{dx}\eq p_2(\tfrac{1}{x})e^{-\frac{1}{x} } }} | ||
+ | # Now we assume {{M|\dfrac{d^kf}{dx^k}\eq p_{2k}(\tfrac{1}{x})e^{-\frac{1}{x} } }} | ||
+ | # We attempt to show that {{M|\left(\dfrac{d^kf}{dx^k}\eq p_{2k}(\tfrac{1}{x})e^{-\frac{1}{x} }\right)\implies\left(\dfrac{d^{k+1}f}{dx^{k+1} }\eq p_{2(k+1)}(\tfrac{1}{x})e^{-\frac{1}{x} } \right)}} | ||
+ | #* {{MM|\frac{d^{k+1}f}{dx^{k+1} }\eq\frac{d}{dx}\left[\frac{d^kf}{dx^k}\right]_x\eq\frac{d}{dx}\left[p_{2k}(\tfrac{1}{x})e^{-\frac{1}{x} }\right]}}{{MM|\eq e^{-\frac{1}{x} }\left(\frac{d}{dy}\Big[p_{2k}(y)\Big]_{y\eq-\frac{1}{x} }\cdot\frac{d}{dx}\Big[-x^{-1}\Big]\right)+p_{2k}(\tfrac{1}{x})\cdot\frac{d}{dx}\Big[e^{-\frac{1}{x} }\Big] }} | ||
+ | #** Well if we differentiate a polynomial of order {{M|2k}} we get a polynomial of order {{M|2k-1}}, so: {{Green highlight|Switching from {{M|p}} to {{M|P}} for the polynomial to make the subscripts more obvious}} | ||
+ | #* {{MM|\frac{d^{k+1}f}{dx^{k+1} }\eq e^{-\frac{1}{x} }P_{2k-1}(\tfrac{1}{x})\cdot x^{-2} + P_{2k}(\tfrac{1}{x})\cdot x^{-2}e^{-\frac{1}{x} } }} {{MM|\eq e^{-\frac{1}{x} }\left(P_{2k-1}(\tfrac{1}{x})\cdot x^{-2}+P_{2k}(\tfrac{1}{x})\cdot x^{-2}\right)}} | ||
+ | #** As {{M|x^{-1}\eq(\tfrac{1}{x})^2}} we see: | ||
+ | #* {{MM|\frac{d^{k+1}f}{dx^{k+1} }\eq e^{-\frac{1}{x} } \left(P_{2k+1}(\tfrac{1}{x}) + P_{2(k+1)}(\tfrac{1}{x}) \right)}} (note that {{M|2k+2\eq 2(k+1)}} in the subscript of {{M|P}}) | ||
+ | #* Thus: {{MM|\frac{d^{k+1}f}{dx^{k+1} }\eq P_{2(k+1)}(\tfrac{1}{x})e^{-\frac{1}{x} } }} - as expected. | ||
+ | #* We have shown the induction hypothesis. | ||
+ | {{Requires work|grade=A*|msg=Important work for manifolds, will probably crop up again!}} | ||
+ | |||
+ | ==Notes== | ||
+ | <references group="Note"/> | ||
==References== | ==References== | ||
<references/> | <references/> |
Latest revision as of 04:25, 27 November 2016
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Important to do! Needs to be nice and neat before this is removed.
Contents
[hide]Example
Let f:R→R be defined as follows:
- f:x↦{e−1xif x>00otherwise
We will show this function is not real-analytic at 0∈R but is smooth.
Proof
For x<0, f is smooth
This is trivial, as f|R<0\ident0
- TODO: The derivative of a constant is 0, the derivative of that is 0, and so forth - link to corresponding pages
For x>0, f is smooth
We will show a slightly different result.
- Let Pm(y) be a polynomial of order m in the invariant y. pm:R→R is the map with pm:y↦p(y) meaning evaluation at y∈R.
We claim that:
- dkfdxk=p2k(1x)e−1x
Proof
To avoid any potential ambiguities Caveat:I'm not sure whether or not there'd be problems with a 0 degree polynomial, but I want to sidestep it we shall prove this by induction starting from k=1.
The proof shall proceed as follows:
- Show that dfdx=p2(1x)e−1x
- Assume that dkfdxk=p2k(1x)e−1x holds
- Show that (dkfdxk=p2k(1x)e−1x)⟹(dk+1fdxk+1=p2(k+1)(1x)e−1x)
- I.E. show that the RHS of this is true (as by the nature of logical implication if the LHS is true - which we assume it is - then for it to imply the RHS the RHS must also be true.
Proof:
- Remember that here we are explicitly dealing with the x∈R>0 case. We are basically considering f:R>0→R by f:x↦e−1x
- Show that dfdx=p2(1x)e−1x Caveat:I'm experimenting with differentiation notation here[Note 1]
- dfdx|x=ddzez|z=−1x⋅ddx−(x−1)|x=e−1x⋅(−1)⋅ddxx−1|x=x−2e−1x
- We see dfdx=(1x)2e−1x or dfdx=p2(1x)e−1x
- Now we assume dkfdxk=p2k(1x)e−1x
- We attempt to show that (dkfdxk=p2k(1x)e−1x)⟹(dk+1fdxk+1=p2(k+1)(1x)e−1x)
- dk+1fdxk+1=ddx[dkfdxk]x=ddx[p2k(1x)e−1x]=e−1x(ddy[p2k(y)]y=−1x⋅ddx[−x−1])+p2k(1x)⋅ddx[e−1x]
- Well if we differentiate a polynomial of order 2k we get a polynomial of order 2k−1, so: Switching from p to P for the polynomial to make the subscripts more obvious
- dk+1fdxk+1=e−1xP2k−1(1x)⋅x−2+P2k(1x)⋅x−2e−1x =e−1x(P2k−1(1x)⋅x−2+P2k(1x)⋅x−2)
- As x−1=(1x)2 we see:
- dk+1fdxk+1=e−1x(P2k+1(1x)+P2(k+1)(1x)) (note that 2k+2=2(k+1) in the subscript of P)
- Thus: dk+1fdxk+1=P2(k+1)(1x)e−1x - as expected.
- We have shown the induction hypothesis.
- dk+1fdxk+1=ddx[dkfdxk]x=ddx[p2k(1x)e−1x]=e−1x(ddy[p2k(y)]y=−1x⋅ddx[−x−1])+p2k(1x)⋅ddx[e−1x]
Grade: A*
This page requires some work to be carried out
Some aspect of this page is incomplete and work is required to finish it
The message provided is:
The message provided is:
Important work for manifolds, will probably crop up again!
Notes
- Jump up ↑ The details are as follows:
- dfdx is itself a function that takes x′ to dfdx|x=x′
- dfdx|x is another way of writing dfdx - anywhere where the variable we are differentiating with respect to is where we are differentiating at invokes this, and is actually a function in the "at" part.
- dfdx|x=z is an expression for the derivative of f (wrt x) - at z - note that it is an expression - not a constant:
- For example ddxx3|x=t=3t2 so ddtddxx3|x=t|t=6t
- ddt[whatever] to mean ddtwhatever|t
- ddt[whatever]t to mean ddtwhatever|t, and
- ddt[whatever]t=p to mean ddtwhatever|t=p
- ddt[whatever]|t=p for example