Difference between revisions of "Ring of sets"

From Maths
Jump to: navigation, search
m
m
Line 6: Line 6:
 
* <math>\forall A\in R\forall B\in R(A\cup B\in R)</math>
 
* <math>\forall A\in R\forall B\in R(A\cup B\in R)</math>
 
* <math>\forall A\in R\forall B\in R(E-F\in R)</math>
 
* <math>\forall A\in R\forall B\in R(E-F\in R)</math>
 +
 +
==A ring that exists==
 +
Take a set {{M|X}}, the [[Power set|power set]] of {{M|X}}, {{M|\mathcal{P}(X)}} is a ring (further still, an [[Algebra of sets|algebra]]) - the proof of this is trivial.
 +
 +
This ring is important because it means we may talk of a "[[Ring generated by|ring generated by]]"
  
 
==First theorems==
 
==First theorems==
Line 14: Line 19:
 
{{End Proof}}
 
{{End Proof}}
 
{{End Theorem}}
 
{{End Theorem}}
 
 
{{Begin Theorem}}
 
{{Begin Theorem}}
 
Given any two rings, {{M|R_1}} and {{M|R_2}}, the intersection of the rings, {{M|R_1\cap R_2}} is a ring
 
Given any two rings, {{M|R_1}} and {{M|R_2}}, the intersection of the rings, {{M|R_1\cap R_2}} is a ring
Line 20: Line 24:
 
We know <math>\emptyset\in R</math>, this means we know at least <math>\{\emptyset\}\subseteq R_1\cap R_2</math> - it is non empty.
 
We know <math>\emptyset\in R</math>, this means we know at least <math>\{\emptyset\}\subseteq R_1\cap R_2</math> - it is non empty.
  
Take any <math>A,B\in R_1\cap R_2</math>
+
Take any <math>A,B\in R_1\cap R_2</math> (which may be the empty set, as shown above)
 +
 
 +
Then:
 +
* <math>A,B\in R_1</math>
 +
* <math>A,B\in R_2</math>
 +
 
 +
 
 +
This means:
 +
* <math>A\cup B\in R_1</math> as {{M|R_1}} is a ring
 +
* <math>A-B\in R_1</math> as {{M|R_1}} is a ring
 +
* <math>A\cup B\in R_2</math> as {{M|R_2}} is a ring
 +
* <math>A-B\in R_2</math> as {{M|R_2}} is a ring
  
 +
But then:
 +
* As <math>A\cup B\in R_1</math> and <math>A\cup B\in R_2</math> we have <math>A\cup B\in R_1\cap R_2</math>
 +
* As <math>A- B\in R_1</math> and <math>A- B\in R_2</math> we have <math>A- B\in R_1\cap R_2</math>
  
 +
Thus <math>R_1\cap R_2</math> is a ring.
 
{{End Proof}}
 
{{End Proof}}
 
{{End Theorem}}
 
{{End Theorem}}

Revision as of 20:19, 16 March 2015

A Ring of sets is also known as a Boolean ring

Note that every Algebra of sets is also a ring, and that an Algebra of sets is sometimes called a Boolean algebra

Definition

A Ring of sets is a non-empty class [ilmath]R[/ilmath][1] of sets such that:

  • [math]\forall A\in R\forall B\in R(A\cup B\in R)[/math]
  • [math]\forall A\in R\forall B\in R(E-F\in R)[/math]

A ring that exists

Take a set [ilmath]X[/ilmath], the power set of [ilmath]X[/ilmath], [ilmath]\mathcal{P}(X)[/ilmath] is a ring (further still, an algebra) - the proof of this is trivial.

This ring is important because it means we may talk of a "ring generated by"

First theorems

The empty set belongs to every ring


Take any [math]A\in R[/math] then [math]A-A\in R[/math] but [math]A-A=\emptyset[/math] so [math]\emptyset\in R[/math]

Given any two rings, [ilmath]R_1[/ilmath] and [ilmath]R_2[/ilmath], the intersection of the rings, [ilmath]R_1\cap R_2[/ilmath] is a ring


We know [math]\emptyset\in R[/math], this means we know at least [math]\{\emptyset\}\subseteq R_1\cap R_2[/math] - it is non empty.

Take any [math]A,B\in R_1\cap R_2[/math] (which may be the empty set, as shown above)

Then:

  • [math]A,B\in R_1[/math]
  • [math]A,B\in R_2[/math]


This means:

  • [math]A\cup B\in R_1[/math] as [ilmath]R_1[/ilmath] is a ring
  • [math]A-B\in R_1[/math] as [ilmath]R_1[/ilmath] is a ring
  • [math]A\cup B\in R_2[/math] as [ilmath]R_2[/ilmath] is a ring
  • [math]A-B\in R_2[/math] as [ilmath]R_2[/ilmath] is a ring

But then:

  • As [math]A\cup B\in R_1[/math] and [math]A\cup B\in R_2[/math] we have [math]A\cup B\in R_1\cap R_2[/math]
  • As [math]A- B\in R_1[/math] and [math]A- B\in R_2[/math] we have [math]A- B\in R_1\cap R_2[/math]

Thus [math]R_1\cap R_2[/math] is a ring.



References

  1. Page 19 - Halmos - Measure Theory - Springer - Graduate Texts in Mathematics (18)