Difference between revisions of "Lebesgue measure"

From Maths
Jump to: navigation, search
m
m
Line 8: Line 8:
 
Where <math>\mathcal{J}=</math> the set of all half-open-half-closed 'rectangles' in <math>\mathbb{R}^n</math>
 
Where <math>\mathcal{J}=</math> the set of all half-open-half-closed 'rectangles' in <math>\mathbb{R}^n</math>
  
Note that it can be shown <math>\mathcal{B}(\mathbb{R}^n)=\sigma(\mathcal{J})</math> where <math>\sigma(\mathcal{J})</math> is the [[Sigma-algebra|{{Sigma|algebra}} [[Sigma-algebra generated by|generated by]] <math>\mathcal{J}</math>
+
Note that it can be shown <math>\mathcal{B}(\mathbb{R}^n)=\sigma(\mathcal{J})</math> where <math>\sigma(\mathcal{J})</math> is the [[Sigma-algebra|{{Sigma|algebra}}]] [[Sigma-algebra generated by|generated by]] <math>\mathcal{J}</math>
  
 
{{Definition|Measure Theory}}
 
{{Definition|Measure Theory}}
 
==References==
 
==References==

Revision as of 18:33, 15 March 2015


Definition

The set function λn:(Rn,B(Rn))R

[1] that assigns every half-open rectangle [[a,b))=[a1,b1)××[an,bn)J
as follows:

λn([[a,b)))=Πni=1(biai)

Where J=

the set of all half-open-half-closed 'rectangles' in Rn

Note that it can be shown B(Rn)=σ(J)

where σ(J)
is the σ-algebra generated by J

References

  1. Jump up P27 - Measures, Integrals and Martingales - Rene L. Schilling