Difference between revisions of "The basis criterion (topology)/Statement"
From Maths
(Created page with "<noinclude> {{Requires references|grade=A|msg=I know introduction to topological manifolds has 'em}} ==Statement== </noinclude>Let {{Top.|X|J}} be a topological space and...") |
(No difference)
|
Latest revision as of 00:08, 23 September 2016
Grade: A
This page requires references, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.
The message provided is:
The message provided is:
I know introduction to topological manifolds has 'em
Statement
Let [ilmath](X,\mathcal{ J })[/ilmath] be a topological space and let [ilmath]\mathcal{B}\in\mathcal{P}(\mathcal{P}(X))[/ilmath] be a topological basis for [ilmath](X,\mathcal{ J })[/ilmath]. Then[1]:
- [ilmath]\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}\iff\underbrace{\forall p\in U\exists B\in\mathcal{B}[p\in B\subseteq U]}_{\text{basis criterion} }\big][/ilmath][Note 1]
If a subset [ilmath]U[/ilmath] of [ilmath]X[/ilmath] satisfies[Note 2] [ilmath]\forall p\in U\exists B\in\mathcal{B}[p\in B\subseteq U][/ilmath] we say it satisfies the basis criterion with respect to [ilmath]\mathcal{B} [/ilmath][1]
Notes
- ↑ Note that when we write [ilmath]p\in B\subseteq U[/ilmath] we actually mean [ilmath]p\in B\wedge B\subseteq U[/ilmath]. This is a very slight abuse of notation and the meaning of what is written should be obvious to all without this note
- ↑ This means "if a [ilmath]U\in\mathcal{P}(X)[/ilmath] satisfies...
References