Difference between revisions of "Basis for a topology"
m (Missed something silly) |
(Refactored page, preliminary version) |
||
Line 1: | Line 1: | ||
+ | {{Refactor notice|grade=A|msg=Updating with findings.}} | ||
+ | __TOC__ | ||
+ | ==Definition== | ||
+ | Let {{Top.|X|J}} be a [[topological space]] and let {{M|\mathcal{B}\in\mathcal{P}(\mathcal{P}(X))}} be any collection of subsets of {{M|X}}<ref group="Note">We could say something else instead of {{M|\mathcal{B}\in\mathcal{P}(\mathcal{P}(X))}}: | ||
+ | * Let {{M|\mathcal{B}\in\mathcal{P}(\mathcal{J})}} - so {{M|\mathcal{B} }} is explicitly a collection of [[open sets]], then we could drop condition {{M|1}}. Or! | ||
+ | * Let {{M|\mathcal{B}\subseteq\mathcal{J} }}. But it is our convention to ''not'' say "let {{M|A\subseteq B}}" but "let {{M|A\in\mathcal{P}(B)}}" instead. To emphasise that the [[power-set]] is possibly in play. | ||
+ | We do not do these because it (sort of) violates the [[Doctrine of Least Surprise]], we usually deal with subsets of the ''space'' not subsets of the ''[[set system]]'' on that space.<br/> | ||
+ | That is a weird way of saying if we have a structure (eg [[topological space]], [[measurable space]], so forth) say {{M|(A,\mathcal{B})}} we usually deal with (collections of) subsets of {{M|A}} and specify they must be in {{M|\mathcal{B} }}.</ref>. We say {{M|\mathcal{B} }} is ''a basis for the [[topology]] {{M|\mathcal{J} }}'' if both of the following are satisfied: | ||
+ | # {{M|1=\forall B\in\mathcal{B}[B\in\mathcal{J}]}} | ||
+ | # {{M|1=\forall U\in\mathcal{J}\exists\{B_\alpha\}_{\alpha\in I}\subseteq\mathcal{B}[\bigcup_{\alpha\in I}B_\alpha=U]}} | ||
+ | ==[[Topology generated by a basis]]== | ||
+ | {{:Topology generated by a basis/Statement}} | ||
+ | ==See also== | ||
+ | * [[Sub-basis for a topology]] | ||
+ | |||
+ | ==Notes== | ||
+ | <references group="Note"/> | ||
+ | ==References== | ||
+ | <references/> | ||
+ | {{Topology navbox|plain}} | ||
+ | {{Definition|Topology}} | ||
+ | =OLD PAGE= | ||
==Definition== | ==Definition== | ||
Let {{M|X}} be a set. A ''basis'' for a topology on {{M|X}} is a collection of subsets of {{M|X}}, {{M|\mathcal{B}\subseteq\mathcal{P}(X)}} such that<ref name="Top">Topology - Second Edition - James R. Munkres</ref>: | Let {{M|X}} be a set. A ''basis'' for a topology on {{M|X}} is a collection of subsets of {{M|X}}, {{M|\mathcal{B}\subseteq\mathcal{P}(X)}} such that<ref name="Top">Topology - Second Edition - James R. Munkres</ref>: |
Revision as of 01:47, 22 September 2016
The message provided is:
Contents
Definition
Let [ilmath](X,\mathcal{ J })[/ilmath] be a topological space and let [ilmath]\mathcal{B}\in\mathcal{P}(\mathcal{P}(X))[/ilmath] be any collection of subsets of [ilmath]X[/ilmath][Note 1]. We say [ilmath]\mathcal{B} [/ilmath] is a basis for the topology [ilmath]\mathcal{J} [/ilmath] if both of the following are satisfied:
- [ilmath]\forall B\in\mathcal{B}[B\in\mathcal{J}][/ilmath]
- [ilmath]\forall U\in\mathcal{J}\exists\{B_\alpha\}_{\alpha\in I}\subseteq\mathcal{B}[\bigcup_{\alpha\in I}B_\alpha=U][/ilmath]
Topology generated by a basis
Let [ilmath]X[/ilmath] be a set and let [ilmath]\mathcal{B}\in\mathcal{P}(\mathcal{P}(X))[/ilmath] be any collection of subsets of [ilmath]X[/ilmath], then:
- [ilmath](X,\{\bigcup\mathcal{A}\ \vert\ \mathcal{A}\in\mathcal{P}(\mathcal{B})\})[/ilmath] is a topological space with [ilmath]\mathcal{B} [/ilmath] being a basis for the topology [ilmath]\{\bigcup\mathcal{A}\ \vert\ \mathcal{A}\in\mathcal{P}(\mathcal{B})\}[/ilmath]
- we have both of the following conditions:
- [ilmath]\bigcup\mathcal{B}=X[/ilmath] (or equivalently: [ilmath]\forall x\in X\exists B\in\mathcal{B}[x\in B][/ilmath][Note 2]) and
- [ilmath]\forall U,V\in\mathcal{B}\big[U\cap V\neq\emptyset\implies \forall x\in U\cap V\exists B\in\mathcal{B}[x\in W\wedge W\subseteq U\cap V]\big][/ilmath][Note 3]
- Caveat:[ilmath]\forall U,V\in\mathcal{B}\ \forall x\in U\cap V\ \exists W\in\mathcal{B}[x\in W\subseteq U\cap V][/ilmath] is commonly said or written; however it is wrong, this is slightly beyond just abuse of notation.[Note 4]
See also
Notes
- ↑ We could say something else instead of [ilmath]\mathcal{B}\in\mathcal{P}(\mathcal{P}(X))[/ilmath]:
- Let [ilmath]\mathcal{B}\in\mathcal{P}(\mathcal{J})[/ilmath] - so [ilmath]\mathcal{B} [/ilmath] is explicitly a collection of open sets, then we could drop condition [ilmath]1[/ilmath]. Or!
- Let [ilmath]\mathcal{B}\subseteq\mathcal{J} [/ilmath]. But it is our convention to not say "let [ilmath]A\subseteq B[/ilmath]" but "let [ilmath]A\in\mathcal{P}(B)[/ilmath]" instead. To emphasise that the power-set is possibly in play.
That is a weird way of saying if we have a structure (eg topological space, measurable space, so forth) say [ilmath](A,\mathcal{B})[/ilmath] we usually deal with (collections of) subsets of [ilmath]A[/ilmath] and specify they must be in [ilmath]\mathcal{B} [/ilmath]. - ↑ By the implies-subset relation [ilmath]\forall x\in X\exists B\in\mathcal{B}[x\in B][/ilmath] really means [ilmath]X\subseteq\bigcup\mathcal{B} [/ilmath], as we only require that all elements of [ilmath]X[/ilmath] be in the union. Not that all elements of the union are in [ilmath]X[/ilmath]. However:
- [ilmath]\mathcal{B}\in\mathcal{P}(\mathcal{P}(X))[/ilmath] by definition. So clearly (or after some thought) the reader should be happy that [ilmath]\mathcal{B} [/ilmath] contains only subsets of [ilmath]X[/ilmath] and he should see that we cannot as a result have an element in one of these subsets that is not in [ilmath]X[/ilmath].
- We then use Union of subsets is a subset of the union (with [ilmath]B_\alpha:\eq X[/ilmath]) to see that [ilmath]\bigcup\mathcal{B}\subseteq X[/ilmath] - as required.
- ↑ We could of course write:
- [ilmath]\forall U,V\in\mathcal{B}\ \forall x\in \bigcup\mathcal{B}\ \exists W\in\mathcal{B}[(x\in U\cap V)\implies(x\in W\wedge W\subseteq U\cap V)][/ilmath]
- ↑ Suppose that [ilmath]U,V\in\mathcal{B} [/ilmath] are given but disjoint, then there are no [ilmath]x\in U\cap V[/ilmath] to speak of, and [ilmath]x\in W[/ilmath] may be vacuously satisfied by the absence of an [ilmath]X[/ilmath], however:
- [ilmath]x\in W\subseteq U\cap V[/ilmath] is taken to mean [ilmath]x\in W[/ilmath] and [ilmath]W\subseteq U\cap V[/ilmath], so we must still show [ilmath]\exists W\in\mathcal{B}[W\subseteq U\cap V][/ilmath]
- This is not always possible as [ilmath]W[/ilmath] would have to be [ilmath]\emptyset[/ilmath] for this to hold! We do not require [ilmath]\emptyset\in\mathcal{B} [/ilmath] (as for example in the metric topology)
- [ilmath]x\in W\subseteq U\cap V[/ilmath] is taken to mean [ilmath]x\in W[/ilmath] and [ilmath]W\subseteq U\cap V[/ilmath], so we must still show [ilmath]\exists W\in\mathcal{B}[W\subseteq U\cap V][/ilmath]
References
|
OLD PAGE
Definition
Let [ilmath]X[/ilmath] be a set. A basis for a topology on [ilmath]X[/ilmath] is a collection of subsets of [ilmath]X[/ilmath], [ilmath]\mathcal{B}\subseteq\mathcal{P}(X)[/ilmath] such that[1]:
- [ilmath]\forall x\in X\exists B\in\mathcal{B}[x\in B][/ilmath] - every element of [ilmath]X[/ilmath] belongs to at least one basis element.
- [ilmath]\forall B_1,B_2\in\mathcal{B},x\in X\ \exists B_3\in\mathcal{B}[x\in B_1\cap B_2\implies(x\in B_3\wedge B_3\subseteq B_1\cap B_2)][/ilmath][Note 1] - if any 2 basis elements have non empty intersection, there is a basis element within that intersection containing each point in it.
Note that:
- The elements of [ilmath]\mathcal{B} [/ilmath] are called basis elements[1]
Topology generated by [ilmath]\mathcal{B} [/ilmath]
If [ilmath]\mathcal{B} [/ilmath] is such a basis for [ilmath]X[/ilmath], we define the topology [ilmath]\mathcal{J} [/ilmath] generated by [ilmath]\mathcal{B} [/ilmath][1] as follows:
- A subset of [ilmath]X[/ilmath], [ilmath]U\subseteq X[/ilmath] is considered open (equivalently, [ilmath]U\in\mathcal{J} [/ilmath]) if:
- [ilmath]\forall x\in U\exists B\in\mathcal{B}[x\in B\wedge B\subseteq U][/ilmath][Note 2]
Claim: This [ilmath]\mathcal{(J)} [/ilmath] is indeed a topology
TODO: Do this, see page 81 in Munkres - shouldn't be hard!
See also
Notes
- ↑ This is a great example of a hiding if-and-only-if, note that:
- [ilmath](x\in B_3\wedge B_3\subseteq B_1\cap B_2)\implies x\in B_1\cap B_2[/ilmath] (by the implies-subset relation) so we have:
- [ilmath](x\in B_3\wedge B_3\subseteq B_1\cap B_2)\implies x\in B_1\cap B_2\implies(x\in B_3\wedge B_3\subseteq B_1\cap B_2)[/ilmath]
- Thus [ilmath](x\in B_3\wedge B_3\subseteq B_1\cap B_2)\iff x\in B_1\cap B_2[/ilmath]
- [ilmath](x\in B_3\wedge B_3\subseteq B_1\cap B_2)\implies x\in B_1\cap B_2[/ilmath] (by the implies-subset relation) so we have:
- ↑ Note that each basis element is itself is open. This is because [ilmath]U[/ilmath] is considered open if forall x, there is a basis element containing [ilmath]x[/ilmath] with that basis element [ilmath]\subseteq U[/ilmath], if [ilmath]U[/ilmath] is itself a basis element, it clearly satisfies this as [ilmath]B\subseteq B[/ilmath]
TODO: Make this into a claim
References