Difference between revisions of "Norm"
From Maths
(Missed 4th property) |
m |
||
Line 6: | Line 6: | ||
# <math>\forall x,y\in V\ \|x+y\|\le\|x\|+\|y\|</math> - a form of the [[Triangle inequality|triangle inequality]] | # <math>\forall x,y\in V\ \|x+y\|\le\|x\|+\|y\|</math> - a form of the [[Triangle inequality|triangle inequality]] | ||
+ | Often parts 1 and 2 are combined into the statement | ||
+ | * <math>\|x\|\ge 0\text{ and }\|x\|=0\iff x=0</math> so only 3 requirements will be stated. | ||
+ | I don't like this | ||
+ | ==Examples== | ||
+ | ===The Euclidean Norm=== | ||
+ | The Euclidean norm is denoted <math>\|\cdot\|_2</math> | ||
+ | |||
+ | |||
+ | Here for <math>x\in\mathbb{R}^n</math> we have: | ||
+ | |||
+ | <math>\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}</math> | ||
+ | {{Todo|proof}} | ||
{{Definition|Linear Algebra}} | {{Definition|Linear Algebra}} |
Revision as of 16:18, 7 March 2015
Definition
A norm on a vector space [ilmath](V,F)[/ilmath] is a function [math]\|\cdot\|:V\rightarrow\mathbb{R}[/math] such that:
- [math]\forall x\in V\ \|x\|\ge 0[/math]
- [math]\|x\|=0\iff x=0[/math]
- [math]\forall \lambda\in F, x\in V\ \|\lambda x\|=|\lambda|\|x\|[/math] where [math]|\cdot|[/math] denotes absolute value
- [math]\forall x,y\in V\ \|x+y\|\le\|x\|+\|y\|[/math] - a form of the triangle inequality
Often parts 1 and 2 are combined into the statement
- [math]\|x\|\ge 0\text{ and }\|x\|=0\iff x=0[/math] so only 3 requirements will be stated.
I don't like this
Examples
The Euclidean Norm
The Euclidean norm is denoted [math]\|\cdot\|_2[/math]
Here for [math]x\in\mathbb{R}^n[/math] we have:
[math]\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}[/math]
TODO: proof