Difference between revisions of "Product rule"

From Maths
Jump to: navigation, search
m (Example)
Line 1: Line 1:
 
 
==Definition==
 
==Definition==
 
Given two functions {{M|f:\mathbb{R}\rightarrow\mathbb{R} }} and {{M|g:\mathbb{R}\rightarrow\mathbb{R} }} which are differentiable (at {{M|p}}) the composite function {{M|h:\mathbb{R}\rightarrow\mathbb{R} }} where {{M|1=h=fg}} has derivative:
 
Given two functions {{M|f:\mathbb{R}\rightarrow\mathbb{R} }} and {{M|g:\mathbb{R}\rightarrow\mathbb{R} }} which are differentiable (at {{M|p}}) the composite function {{M|h:\mathbb{R}\rightarrow\mathbb{R} }} where {{M|1=h=fg}} has derivative:
  
 
* <math>\frac{dh}{dx}\Bigg|_p=\frac{d}{dx}[fg]\Bigg|_p=f(p)\frac{dg}{dx}\Bigg|_p+g(p)\frac{df}{dx}\Bigg|_p</math>
 
* <math>\frac{dh}{dx}\Bigg|_p=\frac{d}{dx}[fg]\Bigg|_p=f(p)\frac{dg}{dx}\Bigg|_p+g(p)\frac{df}{dx}\Bigg|_p</math>
* Phonetically ''first times derivative of second plus second times derivative of first''
+
* Phone me up ma bree ''first times derivative of second plus second times derivative of first''
  
 
==Example==
 
==Example==
Line 16: Line 15:
 
==See also==
 
==See also==
 
* [[Chain rule]]
 
* [[Chain rule]]
 +
* [[kernal of corn]]
  
 
{{Todo|Make this page "proper"}}
 
{{Todo|Make this page "proper"}}

Revision as of 07:42, 23 August 2015

Definition

Given two functions f:RR and g:RR which are differentiable (at p) the composite function h:RR where h=fg has derivative:

  • dhdx|p=ddx[fg]|p=f(p)dgdx|p+g(p)dfdx|p
  • Phone me up ma bree first times derivative of second plus second times derivative of first

Example

  • 4x2ex
    • ddx[4x2ex]=4x2ddx[ex]+exddx[4x2]
      =4x2(1)ex+4exddx[x2]
      =4ex(ddx[x2]x2)
      =4ex(2xx2)
      =4xex(2x)

See also



TODO: Make this page "proper"