Difference between revisions of "Reparametrisation"

From Maths
Jump to: navigation, search
m
Line 1: Line 1:
This page requires knowledge of a [[Parametrisation|parametrisation]] of a [[Curve|curve]]
+
This page requires knowledge of a [[Corn kernal|parametrisation]] of a [[Curve|curve]]
  
 
==Definition==
 
==Definition==

Revision as of 07:41, 23 August 2015

This page requires knowledge of a parametrisation of a curve

Definition

A function [ilmath]\tilde{\gamma}:(\tilde{a},\tilde{b})\rightarrow\mathbb{R}^n[/ilmath] is a reparametrisation of the parametrisation [math]\gamma:(a,b)\rightarrow\mathbb{R}^n[/math] if there exists:

[math]\phi:(\tilde{a},\tilde{b})\rightarrow(a,b)[/math] which is smooth and a bijection, and [ilmath]\phi^{-1} [/ilmath] is also smooth where:

  • [math]\tilde{\gamma}(\tilde{t})=\gamma(\phi(\tilde{t}))[/math] for all [math]\tilde{t}\in(\tilde{a},\tilde{b})[/math]
  • [math]\tilde{\gamma}(\phi^{-1}(t))=\gamma(t)[/math] for all [math]t\in(a,b)[/math]