Difference between revisions of "Addition of vector spaces"
m |
m |
||
Line 1: | Line 1: | ||
==Definitions== | ==Definitions== | ||
+ | All of this comes from the same reference<ref>Advanced Linear Algebra - Third Edition - Steven Roman - Graduate Texts in Mathematics</ref> | ||
{| class="wikitable" border="1" | {| class="wikitable" border="1" | ||
|- | |- | ||
Line 55: | Line 56: | ||
|- | |- | ||
| [[Internal direct sum]] | | [[Internal direct sum]] | ||
− | | <math>V=\bigoplus\mathcal{F}</math> or <math>V=\bigoplus_{i\in I}</math> where the following hold: | + | | Given a family of subspaces of {{M|(V,F)}}, <math>\mathcal{F}=\{V_i|i\in I\}</math>, the internal direct sum is defined as follows:<br/> |
− | # | + | <math>V=\bigoplus\mathcal{F}</math> or <math>V=\bigoplus_{i\in I}</math> where the following hold: |
− | # | + | # <math>V=\sum_{i\in I}V_i</math> - that is that {{M|V}} is the sum (or join) of the family {{M|\mathcal{F} }} |
+ | # <math>\forall i\in I</math> we have <math>V_i\cap\left(\sum_{j\ne i}V_j\right)=\{0\}</math> | ||
+ | | | ||
+ | *For the second condition each {{M|V_j}} is called a ''direct summand'' of {{M|V}} | ||
+ | * If {{M|\mathcal{F} }} is finite, that is <math>\mathcal{F}=\{V_1,\cdots,V_n\}</math> then we often write: | ||
+ | *: <math>V=V_1\oplus\cdots\oplus V_n</math> | ||
+ | * If {{M|1=V=S\oplus T}} then we call {{M|T}} a '''complement of {{M|S}} in {{M|V}}''' | ||
+ | * The {{M|2^\text{nd} }} condition is stronger than saying the members of {{M|\mathcal{F} }} are pairwise disjoint - the book makes this clear although I see it as obvious. (Even though they're not quite pairwise disjoint!) | ||
|} | |} | ||
Revision as of 11:24, 24 April 2015
Definitions
All of this comes from the same reference[1]
Name | Expression | Notes |
---|---|---|
Finite | ||
External direct sum | Given [math]V_1,\cdots,V_n[/math] which are vector spaces over the same field [ilmath]F[/ilmath]: [math]V=\mathop{\boxplus}^n_{i=1}V_i=\left\{(v_1,\cdots,v_n)|v_i\in V_i,\ i=1,2,\cdots,n\right\}[/math] |
This is the easiest definition, for example [math]\mathbb{R}^n=\mathop{\boxplus}^n_{i=1}\mathbb{R}=\underbrace{\mathbb{R}\boxplus\cdots\boxplus\mathbb{R}}_{n\text{ times}}[/math] Operations: (given [ilmath]u,v\in V[/ilmath] where [ilmath]u_i[/ilmath] and [ilmath]c[/ilmath] is a scalar in [ilmath]F[/ilmath])
|
Alternative form | ||
[math]V=\mathop{\boxplus}^n_{i=1}V_i=\left\{\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)\in V_i\ \forall i\in\{1,\cdots,n\}\right\}[/math] | Consider the association: [math](v_1,\cdots,v_n)\mapsto\left[\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)=v_i\ \forall i\right][/math]
Are isomorphic | |
Sum of vector spaces | Given [ilmath]V_1,\cdots,V_n[/ilmath] which are vector subspaces of [ilmath]V[/ilmath] [math]\sum^n_{i=1}V_i=\left\{v_1+\cdots+v_n|v_i\in V_i,\ i=1,2,\cdots,n\right\}[/math] |
|
For any family of vectors (here [ilmath]K[/ilmath] will denote an indexing set and [math]\mathcal{F}=\left\{V_i|i\in K\right\}[/math] (a family of vector spaces over [ilmath]F[/ilmath])) | ||
Direct product | [math]V=\prod_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K\right\}[/math] | Generalisation of the external direct sum |
External direct sum | [math]V=\mathop{\boxplus}_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K,\ f\text{ has finite support}\right\}[/math] | Note:
|
Finite support: | ||
A function [ilmath]f[/ilmath] has finite support if [ilmath]f(i)=0[/ilmath] for all but finitely many [ilmath]i\in K[/ilmath] | So it is "zero almost everywhere" - the set [math]\{f(i)|f(i)\ne 0\}[/math] is finite. | |
Internal direct sum | Given a family of subspaces of [ilmath](V,F)[/ilmath], [math]\mathcal{F}=\{V_i|i\in I\}[/math], the internal direct sum is defined as follows: [math]V=\bigoplus\mathcal{F}[/math] or [math]V=\bigoplus_{i\in I}[/math] where the following hold:
|
|
References
- ↑ Advanced Linear Algebra - Third Edition - Steven Roman - Graduate Texts in Mathematics