Difference between revisions of "Connected (topology)"

From Maths
Jump to: navigation, search
m
m (Connected subset)
Line 22: Line 22:
  
 
==Connected subset==
 
==Connected subset==
Let {{M|A}} and {{M|B}} be two [[Subspace topology|topological subspaces]] - they are separated if each is disjoint from the [[Closure, interior and boundary|closure]] of the other (closure in {{M|X}}), that is:
+
A subset {{M|A}} of a [[Topological space]] {{M|(X,\mathcal{J})}} is connected if (when considered with the [[Subspace topology]]) the only two [[Relatively open]] and [[Relatively closed]] (in A) sets are {{M|A}} and {{M|\emptyset}}<ref>Introduction to topology - Mendelson - third edition</ref>
* <math>(B\cap \bar{A})\cup(A\cap\bar{B})=\emptyset</math>
+
 
{{Definition|Topology}}
 
{{Definition|Topology}}

Revision as of 18:53, 19 April 2015

Definition

A topological space [math](X,\mathcal{J})[/math] is connected if there is no separation of [math]X[/math]

Separation

This belongs on this page because a separation is only useful in this definition.

A separation of [math]X[/math] is a pair of two non-empty open sets [math]U,V[/math] where [math]U\cap V=\emptyset[/math] where [math]U\cup V=X[/math]

Equivalent definition

We can also say: A topological space [math](X,\mathcal{J})[/math] is connected if and only if the sets [math]X,\emptyset[/math] are the only two sets that are both open and closed.

Theorem: A topological space [math](X,\mathcal{J})[/math] is connected if and only if the sets [math]X,\emptyset[/math] are the only two sets that are both open and closed.


Connected[math]\implies[/math]only sets both open and closed are [math]X,\emptyset[/math]

Suppose [math]X[/math] is connected and there exists a set [math]A[/math] that is not empty and not all of [math]X[/math] which is both open and closed. Then as :this is closed, [math]X-A[/math] is open. Thus [math]A,X-A[/math] is a separation, contradicting that [math]X[/math] is connected.

Only sets both open and closed are [math]X,\emptyset\implies[/math]connected


TODO:



Connected subset

A subset [ilmath]A[/ilmath] of a Topological space [ilmath](X,\mathcal{J})[/ilmath] is connected if (when considered with the Subspace topology) the only two Relatively open and Relatively closed (in A) sets are [ilmath]A[/ilmath] and [ilmath]\emptyset[/ilmath][1]
  1. Introduction to topology - Mendelson - third edition