Difference between revisions of "Outer-measure"

From Maths
Jump to: navigation, search
(Created page with " ==Definition== <math>\mu^*=\text{Inf}\left\{\sum^\infty_{n=1}\mu(E_n)|E_n\in R\ \forall n,\ E\subset\bigcup^\infty_{n=1}E_n\right\}</math> {{Definition|Measure Theory}}")
 
m
Line 1: Line 1:
 
+
{{Stub page|Saving work, not even a stub yet!}}
 
==Definition==
 
==Definition==
<math>\mu^*=\text{Inf}\left\{\sum^\infty_{n=1}\mu(E_n)|E_n\in R\ \forall n,\ E\subset\bigcup^\infty_{n=1}E_n\right\}</math>
+
An ''outer-measure'', {{M|\mu^*}} is a [[set function]] from a [[hereditary sigma-ring|hereditary {{sigma|ring}}]], {{M|\mathcal{H} }}, to the (positive) [[extended real value|extended real values]], {{M|\bar{\mathbb{R} }_{\ge0} }}, that is{{rMTH}}:
 
+
* {{M|\forall A\in\mathcal{H}[\mu^*(A)\ge 0]}} - non-negative
 +
* {{M|\forall A,B\in\mathcal{H}[A\subseteq B\implies \mu^*(A)\le\mu^*(B)]}} - [[monotonic]]
 +
* {{MSeq|A_n|in=\mathcal{H}|pre=\forall|post=[\mu^*(\bigcup_{n=1}^\infty A_n)\le\sum^\infty_{n=1}\mu^*(A_n)]}} - [[countably subadditive]]
 +
In words, {{M|\mu^*}} is:
 +
* an ''[[extended real valued]]'' [[countably subadditive set function]] that is [[monotonic]] and non-negative with the property: {{M|1=\mu^*(\emptyset)=0}} defined on a [[hereditary sigma-ring|hereditary {{sigma|ring}}]]
 +
==For every [[pre-measure]]==
 +
<math>\mu^*=\text{Inf}\left.\left\{\sum^\infty_{n=1}\bar{\mu(E_n)}\right\vert E_n\in R\ \forall n,\ E\subset\bigcup^\infty_{n=1}E_n\right\}</math> is an outer measure.
 +
==References==
 +
<references/>
 +
{{Measure theory navbox|plain}}
 
{{Definition|Measure Theory}}
 
{{Definition|Measure Theory}}

Revision as of 17:43, 8 April 2016

(Unknown grade)
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Saving work, not even a stub yet!

Definition

An outer-measure, [ilmath]\mu^*[/ilmath] is a set function from a hereditary [ilmath]\sigma[/ilmath]-ring, [ilmath]\mathcal{H} [/ilmath], to the (positive) extended real values, [ilmath]\bar{\mathbb{R} }_{\ge0} [/ilmath], that is[1]:

  • [ilmath]\forall A\in\mathcal{H}[\mu^*(A)\ge 0][/ilmath] - non-negative
  • [ilmath]\forall A,B\in\mathcal{H}[A\subseteq B\implies \mu^*(A)\le\mu^*(B)][/ilmath] - monotonic
  • [ilmath] \forall ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H} [\mu^*(\bigcup_{n=1}^\infty A_n)\le\sum^\infty_{n=1}\mu^*(A_n)] [/ilmath] - countably subadditive

In words, [ilmath]\mu^*[/ilmath] is:

For every pre-measure

[math]\mu^*=\text{Inf}\left.\left\{\sum^\infty_{n=1}\bar{\mu(E_n)}\right\vert E_n\in R\ \forall n,\ E\subset\bigcup^\infty_{n=1}E_n\right\}[/math] is an outer measure.

References

  1. Measure Theory - Paul R. Halmos