Difference between revisions of "Measure"

From Maths
Jump to: navigation, search
(Created page with "Not to be confused with Pre-measure ==Definition== A ring}} {{M|\mathcal{A} }} and a countably additive, Extended real val...")
 
m
Line 6: Line 6:
  
 
===Contrast with pre-measure===
 
===Contrast with pre-measure===
 +
'''Note:''' the family <math>A_n</math> must be pairwise disjoint
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-

Revision as of 18:08, 13 March 2015

Not to be confused with Pre-measure


Definition

A [ilmath]\sigma[/ilmath]-ring [ilmath]\mathcal{A} [/ilmath] and a countably additive, extended real valued. non-negative set function [math]\mu:\mathcal{A}\rightarrow[0,\infty][/math] is a measure.

Contrast with pre-measure

Note: the family [math]A_n[/math] must be pairwise disjoint

Property Measure Pre-measure
[math]\mu:\mathcal{A}\rightarrow[0,\infty][/math] [math]\mu_0:R\rightarrow[0,\infty][/math]
[math]\mu(\emptyset)=0[/math] [math]\mu_0(\emptyset)=0[/math]
Finitely additive [math]\mu(\bigcup^n_{i=1}A_i)=\sum^n_{i=1}\mu(A_i)[/math] [math]\mu_0(\bigcup^n_{i=1}A_i)=\sum^n_{i=1}\mu_0(A_i)[/math]
Countably additive [math]\mu(\bigcup^\infty_{n=1}A_n)=\sum^\infty_{n=1}\mu(A_n)[/math] If [math]\bigcup^\infty_{n=1}A_n\in R[/math] then [math]\mu_0(\bigcup^\infty_{n=1}A_n)=\sum^\infty_{n=1}\mu_0(A_n)[/math]