Difference between revisions of "Homotopic maps"

From Maths
Jump to: navigation, search
(Created page with "{{Stub page|grade=A*|msg=Needs fleshing out, more references}} ==Definition== Let {{Top.|X|J}} and {{Top.|Y|K}} be topological spaces. Let {{M|f,g:X\rightarrow Y}} be co...")
 
m
 
Line 1: Line 1:
{{Stub page|grade=A*|msg=Needs fleshing out, more references}}
+
{{Stub page|grade=A*|msg=Needs fleshing out, more references. Made a bit of a mess out of it, but I'll leave tidying up until later!}}
 +
==Definition==
 +
Let {{Top.|X|J}} and {{Top.|Y|K}} be [[topological spaces]], let {{M|f,g:X\rightarrow Y}} be ''[[continuous]]'' [[map|maps]] and let {{M|A\in\mathcal{P}(X)}} be an arbitrary subset of {{M|X}}.
 +
* We say "''{{M|f}} is homotopic to {{M|g}} (relative to {{M|A}})''" if there exists a [[homotopy]] {{M|(\text{rel }A)}}<ref group="Note">Recall a [[homotopy]] (relative to {{M|A}}) is a [[continuous map]], {{M|F:X\times I\rightarrow Y}} (where {{M|1=I:=[0,1]\subset\mathbb{R} }} - the [[unit interval]]) such that:
 +
* {{M|1=\forall a\in A\forall s,t\in I[F(a,t)=F(a,s)]}}</ref> whose {{link|initial stage|homotopy}} is {{M|f}} and whose {{link|final stage|homotopy}} is {{M|g}}.
 +
** This is written: {{M|f\simeq g\ (\text{rel}\ A)}}
 +
*** or simply {{M|f\simeq g}} if {{M|1=A=\emptyset}}
 +
** If {{M|1=A=\emptyset}} (and we write {{M|f\simeq g}}) we may say that {{M|f}} and {{M|g}} are ''freely homotopic''
 +
* The [[homotopy]] {{M|(\text{rel }A)}} that exists if {{M|f\simeq g\ (\text{rel }A)}}, say {{M|F:X\times I\rightarrow Y}}, with {{M|1=\forall x\in X[(F(x,0)=f(x))\wedge(F(x,1)=g(x))]}} and {{M|1=\forall a\in A\forall t\in I[F(a,t)=f(a)=g(a)]}}, is called a ''homotopy of maps''
 +
{{Begin Notebox}}
 +
'''Explicit definition:'''<br/>{{Begin Notebox Content}}
 +
We say {{M|f\simeq g\ (\text{rel }A)}} (or {{M|f\simeq g}} if {{M|1=A=\emptyset}}) if:
 +
* There exists a ''[[continuous]]'' [[map]], {{M|F:X\times I\rightarrow Y}} (a ''[[homotopy]]'') such that:
 +
*# {{M|1=\forall x\in X[F(x,0)=f(x)]}} - the {{link|initial stage|homotopy}} of the homotopy is {{M|f}}
 +
*# {{M|1=\forall x\in X[F(x,1)=g(x)]}} - the {{link|final stage|homotopy}} of the homotopy is {{M|g}}
 +
*# {{M|1=\forall a\in A\forall s,t\in I[F(a,s)=F(a,t)]}}<ref group="Note">Note that if {{M|1=A=\emptyset}} then this represents no condition/constraint on {{M|F}}, as are not any {{M|a\in A}} for this to be true on!</ref> - or equivalently - {{M|1=\forall a\in A\forall t\in I[F(a,t)=f(x)=g(x)]}} - the homotopy is fixed on {{M|A}}{{End Notebox Content}}{{End Notebox}}
 +
We can use this to define a [[relation]] on continuous maps:
 +
* If {{M|f\simeq g\ (\text{rel }A)}} then we consider {{M|f}} and {{M|g}} related and say "{{M|f}} is ''homotopic to'' {{M|g}} ({{M|\text{rel }A}})"
 +
'''Claim: ''' this is an equivalence relation (see: [[the relation of maps being homotopic is an equivalence relation]])
 +
==Notes==
 +
<references group="Note"/>
 +
==References==
 +
<references/>
 +
{{Definition|Topology|Homotopy Theory}}
 +
=OLD PAGE=
 
==Definition==
 
==Definition==
 
Let {{Top.|X|J}} and {{Top.|Y|K}} be [[topological spaces]]. Let {{M|f,g:X\rightarrow Y}} be [[continuous maps]]. The [[map|maps]] {{M|f}} and {{M|h}} are said to be ''homotopic''{{rITTMJML}} if:
 
Let {{Top.|X|J}} and {{Top.|Y|K}} be [[topological spaces]]. Let {{M|f,g:X\rightarrow Y}} be [[continuous maps]]. The [[map|maps]] {{M|f}} and {{M|h}} are said to be ''homotopic''{{rITTMJML}} if:

Latest revision as of 13:26, 15 September 2016

Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Needs fleshing out, more references. Made a bit of a mess out of it, but I'll leave tidying up until later!

Definition

Let (X,J) and (Y,K) be topological spaces, let f,g:XY be continuous maps and let AP(X) be an arbitrary subset of X.

  • We say "f is homotopic to g (relative to A)" if there exists a homotopy (rel A)[Note 1] whose initial stage is f and whose final stage is g.
    • This is written: fg (rel A)
      • or simply fg if A=
    • If A= (and we write fg) we may say that f and g are freely homotopic
  • The homotopy (rel A) that exists if fg (rel A), say F:X×IY, with xX[(F(x,0)=f(x))(F(x,1)=g(x))] and aAtI[F(a,t)=f(a)=g(a)], is called a homotopy of maps
[Expand] Explicit definition:

We can use this to define a relation on continuous maps:

  • If fg (rel A) then we consider f and g related and say "f is homotopic to g (rel A)"

Claim: this is an equivalence relation (see: the relation of maps being homotopic is an equivalence relation)

Notes

  1. Jump up Recall a homotopy (relative to A) is a continuous map, F:X×IY (where I:=[0,1]R - the unit interval) such that:
    • aAs,tI[F(a,t)=F(a,s)]
  2. Jump up Note that if A= then this represents no condition/constraint on F, as are not any aA for this to be true on!

References

OLD PAGE

Definition

Let (X,J) and (Y,K) be topological spaces. Let f,g:XY be continuous maps. The maps f and h are said to be homotopic[1] if:

  • there exists a homotopy, H:X×IY, such that H0=f and H1=g - here I:=[0,1]R denotes the unit interval.
    (Recall for tI that Ht:XY (which denotes a stage of the homotopy) is given by Ht:xH(x,t))

TODO: Mention free-homotopy, warn against using null (as that term is used for loops, mention relative homotopy


See also

References

  1. Jump up Introduction to Topological Manifolds - John M. Lee

Template:Homotopy theory navbox