Difference between revisions of "Addition of vector spaces"
m |
(No, u_i is not a scalar (unless V_i is one-dimensional)) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | |||
+ | ==Notes== | ||
+ | * See [[Notes:Vector space operations]] | ||
==Definitions== | ==Definitions== | ||
Line 15: | Line 18: | ||
Often written: <math>V=V_1\boxplus V_2\boxplus\cdots\boxplus V_n</math> | Often written: <math>V=V_1\boxplus V_2\boxplus\cdots\boxplus V_n</math> | ||
| This is the easiest definition, for example <math>\mathbb{R}^n=\mathop{\boxplus}^n_{i=1}\mathbb{R}=\underbrace{\mathbb{R}\boxplus\cdots\boxplus\mathbb{R}}_{n\text{ times}}</math><br/> | | This is the easiest definition, for example <math>\mathbb{R}^n=\mathop{\boxplus}^n_{i=1}\mathbb{R}=\underbrace{\mathbb{R}\boxplus\cdots\boxplus\mathbb{R}}_{n\text{ times}}</math><br/> | ||
− | '''Operations:''' (given {{M| | + | '''Operations:''' (given {{M|u_i,v_i\in V_i}} and {{M|c}} is a scalar in {{M|F}}) |
* <math>(u_1,\cdots,u_n)+(v_1,\cdots,v_n)=(u_1+v_1,\cdots,u_n+v_n)</math> | * <math>(u_1,\cdots,u_n)+(v_1,\cdots,v_n)=(u_1+v_1,\cdots,u_n+v_n)</math> | ||
* <math>c(v_1,\cdots,v_n)=(cv_1,\cdots,cv_n)</math> | * <math>c(v_1,\cdots,v_n)=(cv_1,\cdots,cv_n)</math> |
Latest revision as of 18:02, 18 March 2016
Notes
Definitions
All of this comes from the same reference[1]
Name | Expression | Notes |
---|---|---|
Finite | ||
External direct sum | Given [math]V_1,\cdots,V_n[/math] which are vector spaces over the same field [ilmath]F[/ilmath]: [math]V=\mathop{\boxplus}^n_{i=1}V_i=\left\{(v_1,\cdots,v_n)|v_i\in V_i,\ i=1,2,\cdots,n\right\}[/math] |
This is the easiest definition, for example [math]\mathbb{R}^n=\mathop{\boxplus}^n_{i=1}\mathbb{R}=\underbrace{\mathbb{R}\boxplus\cdots\boxplus\mathbb{R}}_{n\text{ times}}[/math] Operations: (given [ilmath]u_i,v_i\in V_i[/ilmath] and [ilmath]c[/ilmath] is a scalar in [ilmath]F[/ilmath])
|
Alternative form | ||
[math]V=\mathop{\boxplus}^n_{i=1}V_i=\left\{\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)\in V_i\ \forall i\in\{1,\cdots,n\}\right\}[/math] | Consider the association: [math](v_1,\cdots,v_n)\mapsto\left[\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)=v_i\ \forall i\right][/math]
Are isomorphic | |
Sum of vector spaces | Given [ilmath]V_1,\cdots,V_n[/ilmath] which are vector subspaces of [ilmath]V[/ilmath] [math]\sum^n_{i=1}V_i=\left\{v_1+\cdots+v_n|v_i\in V_i,\ i=1,2,\cdots,n\right\}[/math] |
|
For any family of vectors (here [ilmath]K[/ilmath] will denote an indexing set and [math]\mathcal{F}=\left\{V_i|i\in K\right\}[/math] (a family of vector spaces over [ilmath]F[/ilmath])) | ||
Direct product | [math]V=\prod_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K\right\}[/math] | Generalisation of the external direct sum |
External direct sum | [math]V=\mathop{\boxplus}_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K,\ f\text{ has finite support}\right\}[/math] | Note:
|
Finite support: | ||
A function [ilmath]f[/ilmath] has finite support if [ilmath]f(i)=0[/ilmath] for all but finitely many [ilmath]i\in K[/ilmath] | So it is "zero almost everywhere" - the set [math]\{f(i)|f(i)\ne 0\}[/math] is finite. | |
Internal direct sum | Given a family of subspaces of [ilmath](V,F)[/ilmath], [math]\mathcal{F}=\{V_i|i\in I\}[/math], the internal direct sum is defined as follows: [math]V=\bigoplus\mathcal{F}[/math] or [math]V=\bigoplus_{i\in I}[/math] where the following hold:
|
|
References
- ↑ Advanced Linear Algebra - Third Edition - Steven Roman - Graduate Texts in Mathematics