Difference between revisions of "Smooth function"
m |
m (→See also) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Definition== | ==Definition== | ||
− | A '''smooth function''' on a [[Smooth manifold|smooth {{n|manifold}}]], {{M|(M,\mathcal{A})}}, is a function<ref>Introduction to smooth manifolds - John M Lee - Second Edition</ref> {{M|f:M\rightarrow\mathbb{R} | + | A '''smooth function''' on a [[Smooth manifold|smooth {{n|manifold}}]], {{M|(M,\mathcal{A})}}, is a function<ref>Introduction to smooth manifolds - John M Lee - Second Edition</ref> {{M|f:M\rightarrow\mathbb{R} }} that satisfies: |
− | {{M|\forall p\in M\ \exists\ (U,\varphi)\in\mathcal{A} | + | *{{M|\forall p\in M\ \exists\ (U,\varphi)\in\mathcal{A}[p\in U\wedge f\circ\varphi^{-1}:\varphi(U)\subseteq\mathbb{R}^n\rightarrow\mathbb{R}\in C^\infty]}} |
+ | ** That is to say {{M|f\circ\varphi^{-1} }} is [[Smooth|smooth]] in the usual sense - of having continuous partial derivatives of all orders. | ||
− | Any smoothly compatible | + | {{Begin Theorem}} |
+ | Theorem: Any other chart in {{M|(M,\mathcal{A})}} will also satisfy the definition of {{M|f}} being smooth | ||
+ | {{Begin Proof}} | ||
+ | Let {{M|(M,\mathcal{A})}} be a given [[Smooth manifold|smooth manifold]] | ||
+ | |||
+ | Let {{M|(U,\varphi)}} be a chart, on which {{M|f\circ\varphi^{-1}:\varphi(U)\rightarrow\mathbb{R} }} is [[Smooth|smooth]] | ||
+ | |||
+ | We wish to show any [[Smoothly compatible charts|smoothly compatible chart]] with {{M|(U,\varphi)}} will support the definition of {{M|f}} being smooth. | ||
+ | |||
+ | That is to say all other charts in the [[Smooth atlas|smooth atlas]] {{M|\mathcal{A} }} | ||
+ | |||
+ | '''Proof:''' | ||
+ | : Let {{M|(V,\psi)}} be any chart in {{M|\mathcal{A} }} be given. | ||
+ | :: Then {{M|(U,\varphi)}} and {{M|(V,\psi)}} are smoothly compatible | ||
+ | :: this means that either: | ||
+ | ::* {{M|U\cap V}} is empty - in which case there is nothing to show OR | ||
+ | ::* {{M|\varphi\circ\psi^{-1}:\psi(U\cap V)\rightarrow\varphi(U\cap V)}} is a [[Diffeomorphism|diffeomorphism]] | ||
+ | ::: We can compose this with {{M|f\circ\varphi^{-1}:\varphi(U)\rightarrow\mathbb{R} }} as follows | ||
+ | :::: {{M|(f\circ\varphi^{-1})\circ(\varphi\circ\psi^{-1}):\psi(U\cap V)\rightarrow\mathbb{R} }} which is [[Smooth|smooth]] as it is a composition of smooth functions | ||
+ | :::: {{M|1==f\circ\varphi^{-1}\circ\varphi\circ\psi^{-1}:\psi(U\cap V)\rightarrow\mathbb{R} }} | ||
+ | :::: {{M|1==f\circ\psi^{-1}:\psi(U\cap V)\rightarrow\mathbb{R} }} - which we know to be smooth as it is ''equal to'' {{M|(f\circ\varphi^{-1})\circ(\varphi\circ\psi^{-1}):\psi(U\cap V)\rightarrow\mathbb{R} }} - which as we've said is smooth | ||
+ | |||
+ | QED | ||
+ | {{End Proof}} | ||
+ | {{End Theorem}} | ||
+ | |||
+ | ===Extending to vectors=== | ||
Note that given an {{M|f:M\rightarrow\mathbb{R}^k}} this is actually just a set of functions, {{M|f_1,\cdots,f_k}} where {{M|f_i:M\rightarrow\mathbb{R} }} and {{M|1=f(p)=(f_1(p),\cdots,f_k(p))}} | Note that given an {{M|f:M\rightarrow\mathbb{R}^k}} this is actually just a set of functions, {{M|f_1,\cdots,f_k}} where {{M|f_i:M\rightarrow\mathbb{R} }} and {{M|1=f(p)=(f_1(p),\cdots,f_k(p))}} | ||
+ | |||
+ | |||
+ | We can define {{M|f:M\rightarrow\mathbb{R}^k}} as being smooth {{M|1=\iff\forall i=1,\cdots k}} we have {{M|f_i:M\rightarrow\mathbb{R} }} being smooth | ||
+ | |||
==Notations== | ==Notations== | ||
===The set of all smooth functions=== | ===The set of all smooth functions=== | ||
Line 18: | Line 49: | ||
==See also== | ==See also== | ||
+ | * [[Smooth map]] | ||
* [[Smooth manifold]] | * [[Smooth manifold]] | ||
* [[Smoothly compatible charts]] | * [[Smoothly compatible charts]] |
Latest revision as of 16:16, 14 April 2015
Contents
Definition
A smooth function on a smooth [ilmath]n[/ilmath]-manifold, [ilmath](M,\mathcal{A})[/ilmath], is a function[1] [ilmath]f:M\rightarrow\mathbb{R} [/ilmath] that satisfies:
- [ilmath]\forall p\in M\ \exists\ (U,\varphi)\in\mathcal{A}[p\in U\wedge f\circ\varphi^{-1}:\varphi(U)\subseteq\mathbb{R}^n\rightarrow\mathbb{R}\in C^\infty][/ilmath]
- That is to say [ilmath]f\circ\varphi^{-1} [/ilmath] is smooth in the usual sense - of having continuous partial derivatives of all orders.
Theorem: Any other chart in [ilmath](M,\mathcal{A})[/ilmath] will also satisfy the definition of [ilmath]f[/ilmath] being smooth
Let [ilmath](M,\mathcal{A})[/ilmath] be a given smooth manifold
Let [ilmath](U,\varphi)[/ilmath] be a chart, on which [ilmath]f\circ\varphi^{-1}:\varphi(U)\rightarrow\mathbb{R} [/ilmath] is smooth
We wish to show any smoothly compatible chart with [ilmath](U,\varphi)[/ilmath] will support the definition of [ilmath]f[/ilmath] being smooth.
That is to say all other charts in the smooth atlas [ilmath]\mathcal{A} [/ilmath]
Proof:
- Let [ilmath](V,\psi)[/ilmath] be any chart in [ilmath]\mathcal{A} [/ilmath] be given.
- Then [ilmath](U,\varphi)[/ilmath] and [ilmath](V,\psi)[/ilmath] are smoothly compatible
- this means that either:
- [ilmath]U\cap V[/ilmath] is empty - in which case there is nothing to show OR
- [ilmath]\varphi\circ\psi^{-1}:\psi(U\cap V)\rightarrow\varphi(U\cap V)[/ilmath] is a diffeomorphism
- We can compose this with [ilmath]f\circ\varphi^{-1}:\varphi(U)\rightarrow\mathbb{R} [/ilmath] as follows
- [ilmath](f\circ\varphi^{-1})\circ(\varphi\circ\psi^{-1}):\psi(U\cap V)\rightarrow\mathbb{R} [/ilmath] which is smooth as it is a composition of smooth functions
- [ilmath]=f\circ\varphi^{-1}\circ\varphi\circ\psi^{-1}:\psi(U\cap V)\rightarrow\mathbb{R}[/ilmath]
- [ilmath]=f\circ\psi^{-1}:\psi(U\cap V)\rightarrow\mathbb{R}[/ilmath] - which we know to be smooth as it is equal to [ilmath](f\circ\varphi^{-1})\circ(\varphi\circ\psi^{-1}):\psi(U\cap V)\rightarrow\mathbb{R} [/ilmath] - which as we've said is smooth
QED
Extending to vectors
Note that given an [ilmath]f:M\rightarrow\mathbb{R}^k[/ilmath] this is actually just a set of functions, [ilmath]f_1,\cdots,f_k[/ilmath] where [ilmath]f_i:M\rightarrow\mathbb{R} [/ilmath] and [ilmath]f(p)=(f_1(p),\cdots,f_k(p))[/ilmath]
We can define [ilmath]f:M\rightarrow\mathbb{R}^k[/ilmath] as being smooth [ilmath]\iff\forall i=1,\cdots k[/ilmath] we have [ilmath]f_i:M\rightarrow\mathbb{R} [/ilmath] being smooth
Notations
The set of all smooth functions
Without knowledge of smooth manifolds we may already define [ilmath]C^\infty(\mathbb{R}^n)[/ilmath] - the set of all functions with continuous partial derivatives of all orders.
However with this definition of a smooth function we may go further:
The set of all smooth functions on a manifold
Given a smooth [ilmath]n[/ilmath]-manifold, [ilmath]M[/ilmath], we now know what it means for a function to be smooth on it, so:
Let [math]f\in C^\infty(M)\iff f:M\rightarrow\mathbb{R}[/math] is smooth
See also
References
- ↑ Introduction to smooth manifolds - John M Lee - Second Edition