Difference between revisions of "Metric space"
m (Silly error) |
m |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | A [[Normed space|normed space]] is a special case of a metric space, to see the relationships between metric spaces and others see: [[Subtypes of topological spaces]] | |
==Definition of a metric space== | ==Definition of a metric space== | ||
− | + | A metric space is a set <math>X</math> coupled with a "distance function"<ref name="Topology">Introduction to Topology - Bert Mendelson</ref>{{rITTGG}}: | |
− | A metric space is a set <math>X</math> coupled with a "distance function" <math>d:X\times X\rightarrow\mathbb{R}</math> | + | * <math>d:X\times X\rightarrow\mathbb{R}</math> or sometimes |
− | + | * <math>d:X\times X\rightarrow\mathbb{R}_+</math><ref name="Analysis">Analysis - Part 1: Elements - Krzysztof Maurin</ref>, Note that here I prefer the notation <math>d:X\times X\rightarrow\mathbb{R}_{\ge 0}</math> | |
− | # <math>d(x,y)\ge 0</math> | + | With the properties that for <math>x,y,z\in X</math>: |
+ | # <math>d(x,y)\ge 0</math> (This is implicit with the {{M|1=d:X\times X\rightarrow\mathbb{R}_{\ge 0} }} definition) | ||
# <math>d(x,y)=0\iff x=y</math> | # <math>d(x,y)=0\iff x=y</math> | ||
− | # <math>d(x,y)=d(y,x)</math> | + | # <math>d(x,y)=d(y,x)</math> - Symmetry |
− | # <math>d(x,z)\le d(x,y)+d(y,z)</math> - the [[Triangle | + | # <math>d(x,z)\le d(x,y)+d(y,z)</math> - the [[Triangle inequality]] |
− | + | ||
− | + | ||
+ | We will denote a metric space as <math>(X,d)</math> (as <math>(X,d:X\times X\rightarrow\mathbb{R}_{\ge 0})</math> is too long and [[Mathematicians are lazy]]) or simply <math>X</math> if it is obvious which metric we are talking about on <math>X</math> | ||
==Examples of metrics== | ==Examples of metrics== | ||
Line 17: | Line 17: | ||
For <math>x=(x_1,...,x_n)\in\mathbb{R}^n</math> and <math>y=(y_1,...,y_n)\in\mathbb{R}^n</math> we define the Euclidian metric by: | For <math>x=(x_1,...,x_n)\in\mathbb{R}^n</math> and <math>y=(y_1,...,y_n)\in\mathbb{R}^n</math> we define the Euclidian metric by: | ||
− | <math>d_{\text{Euclidian}}(x,y)=\sqrt{\ | + | <math>d_{\text{Euclidian}}(x,y)=\sqrt{\sum^n_{i=1}((x_i-y_i)^2)}</math> |
− | + | {{Begin Theorem}} | |
− | + | Proof that this is a metric | |
− | {{Todo | + | {{Begin Proof}} |
+ | {{Todo}} | ||
+ | {{End Proof}}{{End Theorem}} | ||
− | === | + | ===[[Discrete metric and topology|Discrete Metric]]=== |
− | + | {{:Discrete metric and topology/Metric space definition}} | |
+ | ====Notes==== | ||
+ | {{:Discrete metric and topology/Summary}} | ||
− | + | ==See also== | |
− | + | * [[Topology induced by a metric]] | |
− | + | * [[Connected space]] | |
− | + | * [[Topological space]] | |
+ | ==Notes== | ||
+ | <references group="Note"/> | ||
+ | ==References== | ||
+ | <references/> | ||
{{Definition|Topology|Metric Space}} | {{Definition|Topology|Metric Space}} |
Latest revision as of 06:07, 27 November 2015
A normed space is a special case of a metric space, to see the relationships between metric spaces and others see: Subtypes of topological spaces
Contents
Definition of a metric space
A metric space is a set [math]X[/math] coupled with a "distance function"[1][2]:
- [math]d:X\times X\rightarrow\mathbb{R}[/math] or sometimes
- [math]d:X\times X\rightarrow\mathbb{R}_+[/math][3], Note that here I prefer the notation [math]d:X\times X\rightarrow\mathbb{R}_{\ge 0}[/math]
With the properties that for [math]x,y,z\in X[/math]:
- [math]d(x,y)\ge 0[/math] (This is implicit with the [ilmath]d:X\times X\rightarrow\mathbb{R}_{\ge 0}[/ilmath] definition)
- [math]d(x,y)=0\iff x=y[/math]
- [math]d(x,y)=d(y,x)[/math] - Symmetry
- [math]d(x,z)\le d(x,y)+d(y,z)[/math] - the Triangle inequality
We will denote a metric space as [math](X,d)[/math] (as [math](X,d:X\times X\rightarrow\mathbb{R}_{\ge 0})[/math] is too long and Mathematicians are lazy) or simply [math]X[/math] if it is obvious which metric we are talking about on [math]X[/math]
Examples of metrics
Euclidian Metric
The Euclidian metric on [math]\mathbb{R}^n[/math] is defined as follows: For [math]x=(x_1,...,x_n)\in\mathbb{R}^n[/math] and [math]y=(y_1,...,y_n)\in\mathbb{R}^n[/math] we define the Euclidian metric by:
[math]d_{\text{Euclidian}}(x,y)=\sqrt{\sum^n_{i=1}((x_i-y_i)^2)}[/math]
Proof that this is a metric
TODO:
Discrete Metric
Let [ilmath]X[/ilmath] be a set. The discrete[2] metric, or trivial metric[4] is the metric defined as follows:
- [math]d:X\times X\rightarrow \mathbb{R}_{\ge 0} [/math] with [math]d:(x,y)\mapsto\left\{\begin{array}{lr}0 & \text{if }x=y \\1 & \text{otherwise}\end{array}\right.[/math]
However any strictly positive value will do for the [ilmath]x\ne y[/ilmath] case. For example we could define [ilmath]d[/ilmath] as:
- [math]d:(x,y)\mapsto\left\{\begin{array}{lr}0 & \text{if }x=y \\v & \text{otherwise}\end{array}\right.[/math]
- Where [ilmath]v[/ilmath] is some arbitrary member of [ilmath]\mathbb{R}_{> 0} [/ilmath][Note 1] - traditionally (as mentioned) [ilmath]v=1[/ilmath] is used.
- Where [ilmath]v[/ilmath] is some arbitrary member of [ilmath]\mathbb{R}_{> 0} [/ilmath][Note 1] - traditionally (as mentioned) [ilmath]v=1[/ilmath] is used.
Note: however in proofs we shall always use the case [ilmath]v=1[/ilmath] for simplicity
Notes
Property | Comment |
---|---|
induced topology | discrete topology - which is the topology [ilmath](X,\mathcal{P}(X))[/ilmath] (where [ilmath]\mathcal{P} [/ilmath] denotes power set) |
Open ball | [ilmath]B_r(x):=\{p\in X\vert\ d(p,x)< r\}=\left\{\begin{array}{lr}\{x\} & \text{if }r\le 1 \\ X & \text{otherwise}\end{array}\right.[/ilmath] |
Open sets | Every subset of [ilmath]X[/ilmath] is open. Proof outline: as for a subset [ilmath]A\subseteq X[/ilmath] we can show [ilmath]\forall x\in A\exists r[B_r(x)\subseteq A][/ilmath] by choosing say, that is [ilmath]A[/ilmath] contains an open ball centred at each point in [ilmath]A[/ilmath]. |
Connected | The topology generated by [ilmath](X,d_\text{discrete})[/ilmath] is not connected if [ilmath]X[/ilmath] has more than one point. Proof outline:
|
See also
Notes
- ↑ Note the strictly greater than 0 requirement for [ilmath]v[/ilmath]