Difference between revisions of "Convergence of a sequence"
From Maths
(Created page with "Like with continuity there are three forms for convergence of a Sequence Given a sequence <math>(a_n)^n_{n=1}</math> we may say that it converges to {{...") |
m (Redirected page to Limit (sequence)) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | #REDIRECT [[Limit (sequence)]] | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | {{Todo|preserve "interesting" example}} | ||
==Interesting examples== | ==Interesting examples== | ||
===<math>f_n(t)=t^n\rightarrow 0</math> in <math>\|\cdot\|_{L^1}</math>=== | ===<math>f_n(t)=t^n\rightarrow 0</math> in <math>\|\cdot\|_{L^1}</math>=== | ||
Line 31: | Line 10: | ||
This clearly <math>\rightarrow 0</math> - this is <math>0:[0,1]\rightarrow\mathbb{R}</math> which of course has [[Norm|norm]] {{M|0}}, we think of this from the sequence <math>(\|f_n-0\|_{L^1})^\infty_{n=1}\rightarrow 0\iff f_n\rightarrow 0</math> | This clearly <math>\rightarrow 0</math> - this is <math>0:[0,1]\rightarrow\mathbb{R}</math> which of course has [[Norm|norm]] {{M|0}}, we think of this from the sequence <math>(\|f_n-0\|_{L^1})^\infty_{n=1}\rightarrow 0\iff f_n\rightarrow 0</math> | ||
− | {{Definition|Real Analysis|Topology|Functional Analysis}} | + | {{Definition|Real Analysis|Topology|Functional Analysis|Metric Space}} |
Latest revision as of 13:30, 5 December 2015
Redirect to:
TODO: preserve "interesting" example
Interesting examples
[math]f_n(t)=t^n\rightarrow 0[/math] in [math]\|\cdot\|_{L^1}[/math]
Using the [math]\|\cdot\|_{L^1}[/math] norm stated here for convenience: [math]\|f\|_{L^p}=\left(\int^1_0|f(x)|^pdx\right)^\frac{1}{p}[/math] so [math]\|f\|_{L^1}=\int^1_0|f(x)|dx[/math]
We see that [math]\|f_n\|_{L^1}=\int^1_0x^ndx=\left[\frac{1}{n+1}x^{n+1}\right]^1_0=\frac{1}{n+1}[/math]
This clearly [math]\rightarrow 0[/math] - this is [math]0:[0,1]\rightarrow\mathbb{R}[/math] which of course has norm [ilmath]0[/ilmath], we think of this from the sequence [math](\|f_n-0\|_{L^1})^\infty_{n=1}\rightarrow 0\iff f_n\rightarrow 0[/math]