Difference between revisions of "Relation"
From Maths
m (→Types of relation) |
m (→Types of relation: fixing typo) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
==Definition== | ==Definition== | ||
− | A relation {{M|\mathcal{R} }} between two sets is a subset of the [[Cartesian product]] of two sets<ref name=" | + | A ''binary relation'' {{M|\mathcal{R} }} (or just a ''relation'' {{M|R}}<ref group="Note">A binary relation should be assumed if just relation is specified</ref>) between two sets is a subset of the [[Cartesian product]] of two sets{{rAPIKM}}<ref name="TAPL">Types and Programming Languages - Benjamin C. Peirce</ref>, that is: |
* {{M|\mathcal{R}\subseteq X\times Y}} | * {{M|\mathcal{R}\subseteq X\times Y}} | ||
− | We say that {{M|\mathcal{R} }} is a ''relation in {{M|X}}''<ref name=" | + | We say that {{M|\mathcal{R} }} is a ''relation in {{M|X}}''<ref name="APIKM"/> if: |
− | * {{M|\mathcal{R}\subseteq X\times X}} (note that {{M|\mathcal{R} }} is sometimes<ref name=" | + | * {{M|\mathcal{R}\subseteq X\times X}} (note that {{M|\mathcal{R} }} is sometimes<ref name="APIKM"/> called a ''graph'') |
** For example {{M|<}} is a relation in the set of {{M|\mathbb{Z} }} (the integers) | ** For example {{M|<}} is a relation in the set of {{M|\mathbb{Z} }} (the integers) | ||
Line 23: | Line 19: | ||
|- | |- | ||
| NO IDEA | | NO IDEA | ||
− | | {{M|1=P_X\mathcal{R} }}<ref name=" | + | | {{M|1=P_X\mathcal{R} }}<ref name="APIKM"/> |
| {{M|1=P_X\mathcal{R}=\{x\in X\vert\ \exists y:\ x\mathcal{R}y\} }} - a [[Function|function]] is (among other things) a case where {{M|1=P_Xf=X}} | | {{M|1=P_X\mathcal{R}=\{x\in X\vert\ \exists y:\ x\mathcal{R}y\} }} - a [[Function|function]] is (among other things) a case where {{M|1=P_Xf=X}} | ||
|- | |- | ||
! Inverse relation | ! Inverse relation | ||
− | | {{M|\mathcal{R}^{-1} }}<ref name=" | + | | {{M|\mathcal{R}^{-1} }}<ref name="APIKM"/> |
| {{M|1=\mathcal{R}^{-1}:=\{(y,x)\in Y\times X\vert\ x\mathcal{R}y\} }} | | {{M|1=\mathcal{R}^{-1}:=\{(y,x)\in Y\times X\vert\ x\mathcal{R}y\} }} | ||
|- | |- | ||
! Composing relations | ! Composing relations | ||
− | | {{M|\mathcal{R}\circ\mathcal{S} }}<ref name=" | + | | {{M|\mathcal{R}\circ\mathcal{S} }}<ref name="APIKM"/> |
| {{M|1=\mathcal{R}\circ\mathcal{S}:=\{(x,z)\in X\times Z\vert\ \exists y\in Y[x\mathcal{R}y\wedge y\mathcal{S}z]\} }} | | {{M|1=\mathcal{R}\circ\mathcal{S}:=\{(x,z)\in X\times Z\vert\ \exists y\in Y[x\mathcal{R}y\wedge y\mathcal{S}z]\} }} | ||
|} | |} | ||
==Simple examples of relations== | ==Simple examples of relations== | ||
− | # The ''empty relation''<ref name=" | + | # The ''empty relation''<ref name="APIKM"/>, {{M|\emptyset\subset X\times X}} is of course a relation |
− | # The ''total relation''<ref name=" | + | # The ''total relation''<ref name="APIKM"/>, {{M|1=\mathcal{R}=X\times X}} that relates everything to everything |
− | # The ''identity relation''<ref name=" | + | # The ''identity relation''<ref name="APIKM"/>, {{M|1=\text{id}_X:=\text{id}:=\{(x,y)\in X\times X\vert x=y\}=\{(x,x)\in X\times X\vert x\in X\} }} |
− | #* This is also known as<ref name=" | + | #* This is also known as<ref name="APIKM"/> ''the diagonal of the square {{M|X\times X}}'' |
==Types of relation== | ==Types of relation== | ||
Line 50: | Line 46: | ||
! Notes | ! Notes | ||
|- | |- | ||
− | ! Reflexive<ref name=" | + | ! {{Anchor|Type_reflexive}}Reflexive<ref name="APIKM"/> |
| {{M|\text{id}_X\subseteq\mathcal{R} }} | | {{M|\text{id}_X\subseteq\mathcal{R} }} | ||
| {{M|\forall x\in X[x\mathcal{R}x]}} | | {{M|\forall x\in X[x\mathcal{R}x]}} | ||
| Every element is related to itself (example, equality) | | Every element is related to itself (example, equality) | ||
|- | |- | ||
− | ! Symmetric<ref name=" | + | ! {{Anchor|Type_symmetric}}Symmetric<ref name="APIKM"/> |
| {{M|\mathcal{R}\subseteq\mathcal{R}^{-1} }} | | {{M|\mathcal{R}\subseteq\mathcal{R}^{-1} }} | ||
| {{M|\forall x\in X\forall y\in X[x\mathcal{R}y\implies y\mathcal{R}x]}} | | {{M|\forall x\in X\forall y\in X[x\mathcal{R}y\implies y\mathcal{R}x]}} | ||
| (example, equality) | | (example, equality) | ||
|- | |- | ||
− | ! Transitive<ref name=" | + | ! {{Anchor|Type_transitive}}Transitive<ref name="APIKM"/> |
| {{M|\mathcal{R}\circ\mathcal{R}\subseteq\mathcal{R} }} | | {{M|\mathcal{R}\circ\mathcal{R}\subseteq\mathcal{R} }} | ||
| {{M|\forall x,y,z\in X[(x\mathcal{R}y\wedge y\mathcal{R}z)\implies x\mathcal{R}z]}} | | {{M|\forall x,y,z\in X[(x\mathcal{R}y\wedge y\mathcal{R}z)\implies x\mathcal{R}z]}} | ||
| (example, equality, {{M|<}}) | | (example, equality, {{M|<}}) | ||
|- | |- | ||
− | ! | + | ! {{Anchor|Type_antisymmetric|Type_identitive}}Antisymmetric<ref name="RAAA">Real and Abstract Analysis - Edwin Hewitt and Karl Stromberg</ref><br/>({{AKA}} Identitive<ref name="APIKM"/>) |
| {{M|\mathcal{R}\cap\mathcal{R}^{-1}\subseteq\text{id}_X}} | | {{M|\mathcal{R}\cap\mathcal{R}^{-1}\subseteq\text{id}_X}} | ||
| {{M|1=\forall x\in X\forall y\in X[(x\mathcal{R}y\wedge y\mathcal{R}x)\implies x=y]}} | | {{M|1=\forall x\in X\forall y\in X[(x\mathcal{R}y\wedge y\mathcal{R}x)\implies x=y]}} | ||
| {{Todo|What about a relation like 1r2 1r1 2r1 and 2r2}} | | {{Todo|What about a relation like 1r2 1r1 2r1 and 2r2}} | ||
|- | |- | ||
− | ! Connected<ref name=" | + | ! {{Anchor|Type_connected}}Connected<ref name="APIKM"/> |
| {{M|1=\mathcal{R}\cup\mathcal{R}^{-1}=X\times X}} | | {{M|1=\mathcal{R}\cup\mathcal{R}^{-1}=X\times X}} | ||
| | | | ||
| {{Todo|Work out what this means}} | | {{Todo|Work out what this means}} | ||
|- | |- | ||
− | ! Asymmetric<ref name=" | + | ! {{Anchor|Type_asymmetric}}Asymmetric<ref name="APIKM"/> |
| {{M|1=\mathcal{R}\subseteq\complement(\mathcal{R}^{-1})}} | | {{M|1=\mathcal{R}\subseteq\complement(\mathcal{R}^{-1})}} | ||
| {{M|1=\forall x\in X\forall y\in X[x\mathcal{R}y\implies (y,x)\notin\mathcal{R}]}} | | {{M|1=\forall x\in X\forall y\in X[x\mathcal{R}y\implies (y,x)\notin\mathcal{R}]}} | ||
| Like {{M|<}} (see: [[Contrapositive]]) | | Like {{M|<}} (see: [[Contrapositive]]) | ||
|- | |- | ||
− | ! Right-unique<ref name=" | + | ! {{Anchor|Type_right-unique}}Right-unique<ref name="APIKM"/> |
| {{M|1=\mathcal{R}^{-1}\circ\mathcal{R}\subseteq\text{id}_X}} | | {{M|1=\mathcal{R}^{-1}\circ\mathcal{R}\subseteq\text{id}_X}} | ||
| {{M|1=\forall x,y,z\in X[(x\mathcal{R}y\wedge x\mathcal{R}z)\implies y=z]}} | | {{M|1=\forall x,y,z\in X[(x\mathcal{R}y\wedge x\mathcal{R}z)\implies y=z]}} | ||
| This is the definition of a [[function]] | | This is the definition of a [[function]] | ||
|- | |- | ||
− | ! Left-unique<ref name=" | + | ! {{Anchor|Type_left-unique}}Left-unique<ref name="APIKM"/> |
| {{M|1=\mathcal{R}\circ\mathcal{R}^{-1}\subseteq\text{id}_X}} | | {{M|1=\mathcal{R}\circ\mathcal{R}^{-1}\subseteq\text{id}_X}} | ||
| {{M|1=\forall x,y,z\in X[(x\mathcal{R}y\wedge z\mathcal{R}y)\implies x=z]}} | | {{M|1=\forall x,y,z\in X[(x\mathcal{R}y\wedge z\mathcal{R}y)\implies x=z]}} | ||
| | | | ||
|- | |- | ||
− | ! Mutually unique<ref name=" | + | ! {{Anchor|Type_mutually-unique}}Mutually unique<ref name="APIKM"/> |
| Both right and left unique | | Both right and left unique | ||
| | | | ||
Line 96: | Line 92: | ||
|} | |} | ||
+ | ==Examples of binary relations== | ||
+ | * [[Function|Functions / mappings]] | ||
+ | * [[Equivalence relation|Equivalence relations]] | ||
+ | * [[Ordering|Orderings]] | ||
+ | * [[Preordering|Preorderings]] | ||
+ | ==Notes== | ||
+ | <references group="Note"/> | ||
==References== | ==References== | ||
<references/> | <references/> | ||
− | + | {{Relations navbox|plain}} | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
{{Definition|Set Theory}} | {{Definition|Set Theory}} |
Latest revision as of 20:07, 20 April 2016
Contents
Definition
A binary relation [ilmath]\mathcal{R} [/ilmath] (or just a relation [ilmath]R[/ilmath][Note 1]) between two sets is a subset of the Cartesian product of two sets[1][2], that is:
- [ilmath]\mathcal{R}\subseteq X\times Y[/ilmath]
We say that [ilmath]\mathcal{R} [/ilmath] is a relation in [ilmath]X[/ilmath][1] if:
- [ilmath]\mathcal{R}\subseteq X\times X[/ilmath] (note that [ilmath]\mathcal{R} [/ilmath] is sometimes[1] called a graph)
- For example [ilmath]<[/ilmath] is a relation in the set of [ilmath]\mathbb{Z} [/ilmath] (the integers)
If [ilmath](x,y)\in\mathcal{R} [/ilmath] then we:
- Say: [ilmath]x[/ilmath] is in relation [ilmath]\mathcal{R} [/ilmath] with [ilmath]y[/ilmath]
- Write: [ilmath]x\mathcal{R}y[/ilmath] for short.
Operations
Here [ilmath]\mathcal{R} [/ilmath] is a relation between [ilmath]X[/ilmath] and [ilmath]Y[/ilmath], that is [ilmath]\mathcal{R}\subseteq X\times Y[/ilmath], and [ilmath]\mathcal{S}\subseteq Y\times Z[/ilmath]
Name | Notation | Definition |
---|---|---|
NO IDEA | [ilmath]P_X\mathcal{R}[/ilmath][1] | [ilmath]P_X\mathcal{R}=\{x\in X\vert\ \exists y:\ x\mathcal{R}y\}[/ilmath] - a function is (among other things) a case where [ilmath]P_Xf=X[/ilmath] |
Inverse relation | [ilmath]\mathcal{R}^{-1} [/ilmath][1] | [ilmath]\mathcal{R}^{-1}:=\{(y,x)\in Y\times X\vert\ x\mathcal{R}y\}[/ilmath] |
Composing relations | [ilmath]\mathcal{R}\circ\mathcal{S} [/ilmath][1] | [ilmath]\mathcal{R}\circ\mathcal{S}:=\{(x,z)\in X\times Z\vert\ \exists y\in Y[x\mathcal{R}y\wedge y\mathcal{S}z]\}[/ilmath] |
Simple examples of relations
- The empty relation[1], [ilmath]\emptyset\subset X\times X[/ilmath] is of course a relation
- The total relation[1], [ilmath]\mathcal{R}=X\times X[/ilmath] that relates everything to everything
- The identity relation[1], [ilmath]\text{id}_X:=\text{id}:=\{(x,y)\in X\times X\vert x=y\}=\{(x,x)\in X\times X\vert x\in X\}[/ilmath]
- This is also known as[1] the diagonal of the square [ilmath]X\times X[/ilmath]
Types of relation
Here [ilmath]\mathcal{R}\subseteq X\times X[/ilmath]
Name | Set relation | Statement | Notes |
---|---|---|---|
Reflexive[1] | [ilmath]\text{id}_X\subseteq\mathcal{R} [/ilmath] | [ilmath]\forall x\in X[x\mathcal{R}x][/ilmath] | Every element is related to itself (example, equality) |
Symmetric[1] | [ilmath]\mathcal{R}\subseteq\mathcal{R}^{-1} [/ilmath] | [ilmath]\forall x\in X\forall y\in X[x\mathcal{R}y\implies y\mathcal{R}x][/ilmath] | (example, equality) |
Transitive[1] | [ilmath]\mathcal{R}\circ\mathcal{R}\subseteq\mathcal{R} [/ilmath] | [ilmath]\forall x,y,z\in X[(x\mathcal{R}y\wedge y\mathcal{R}z)\implies x\mathcal{R}z][/ilmath] | (example, equality, [ilmath]<[/ilmath]) |
Antisymmetric[3] (AKA Identitive[1]) |
[ilmath]\mathcal{R}\cap\mathcal{R}^{-1}\subseteq\text{id}_X[/ilmath] | [ilmath]\forall x\in X\forall y\in X[(x\mathcal{R}y\wedge y\mathcal{R}x)\implies x=y][/ilmath] |
TODO: What about a relation like 1r2 1r1 2r1 and 2r2 |
Connected[1] | [ilmath]\mathcal{R}\cup\mathcal{R}^{-1}=X\times X[/ilmath] |
TODO: Work out what this means | |
Asymmetric[1] | [ilmath]\mathcal{R}\subseteq\complement(\mathcal{R}^{-1})[/ilmath] | [ilmath]\forall x\in X\forall y\in X[x\mathcal{R}y\implies (y,x)\notin\mathcal{R}][/ilmath] | Like [ilmath]<[/ilmath] (see: Contrapositive) |
Right-unique[1] | [ilmath]\mathcal{R}^{-1}\circ\mathcal{R}\subseteq\text{id}_X[/ilmath] | [ilmath]\forall x,y,z\in X[(x\mathcal{R}y\wedge x\mathcal{R}z)\implies y=z][/ilmath] | This is the definition of a function |
Left-unique[1] | [ilmath]\mathcal{R}\circ\mathcal{R}^{-1}\subseteq\text{id}_X[/ilmath] | [ilmath]\forall x,y,z\in X[(x\mathcal{R}y\wedge z\mathcal{R}y)\implies x=z][/ilmath] | |
Mutually unique[1] | Both right and left unique |
TODO: Investigate |
Examples of binary relations
Notes
- ↑ A binary relation should be assumed if just relation is specified
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 Analysis - Part 1: Elements - Krzysztof Maurin
- ↑ Types and Programming Languages - Benjamin C. Peirce
- ↑ Real and Abstract Analysis - Edwin Hewitt and Karl Stromberg
|