Difference between revisions of "Product rule"

From Maths
Jump to: navigation, search
m
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
 
==Definition==
 
==Definition==
 
Given two functions {{M|f:\mathbb{R}\rightarrow\mathbb{R} }} and {{M|g:\mathbb{R}\rightarrow\mathbb{R} }} which are differentiable (at {{M|p}}) the composite function {{M|h:\mathbb{R}\rightarrow\mathbb{R} }} where {{M|1=h=fg}} has derivative:
 
Given two functions {{M|f:\mathbb{R}\rightarrow\mathbb{R} }} and {{M|g:\mathbb{R}\rightarrow\mathbb{R} }} which are differentiable (at {{M|p}}) the composite function {{M|h:\mathbb{R}\rightarrow\mathbb{R} }} where {{M|1=h=fg}} has derivative:
  
 
* <math>\frac{dh}{dx}\Bigg|_p=\frac{d}{dx}[fg]\Bigg|_p=f(p)\frac{dg}{dx}\Bigg|_p+g(p)\frac{df}{dx}\Bigg|_p</math>
 
* <math>\frac{dh}{dx}\Bigg|_p=\frac{d}{dx}[fg]\Bigg|_p=f(p)\frac{dg}{dx}\Bigg|_p+g(p)\frac{df}{dx}\Bigg|_p</math>
* Phone me up ma bree ''first times derivative of second plus second times derivative of first''
+
* Phonetically ''first times derivative of second plus second times derivative of first''
  
 
==Example==
 
==Example==
Line 15: Line 16:
 
==See also==
 
==See also==
 
* [[Chain rule]]
 
* [[Chain rule]]
* [[kernal of corn]]
 
 
{{Todo|Make this page "proper"}}
 

Latest revision as of 18:45, 28 August 2015

Definition

Given two functions [ilmath]f:\mathbb{R}\rightarrow\mathbb{R} [/ilmath] and [ilmath]g:\mathbb{R}\rightarrow\mathbb{R} [/ilmath] which are differentiable (at [ilmath]p[/ilmath]) the composite function [ilmath]h:\mathbb{R}\rightarrow\mathbb{R} [/ilmath] where [ilmath]h=fg[/ilmath] has derivative:

  • [math]\frac{dh}{dx}\Bigg|_p=\frac{d}{dx}[fg]\Bigg|_p=f(p)\frac{dg}{dx}\Bigg|_p+g(p)\frac{df}{dx}\Bigg|_p[/math]
  • Phonetically first times derivative of second plus second times derivative of first

Example

  • [math]4x^2e^{-x}[/math]
    • [math]\frac{d}{dx}\Big[4x^2e^{-x}\Big]=4x^2\frac{d}{dx}\Big[e^{-x}\Big]+e^{-x}\frac{d}{dx}\Big[4x^2\Big][/math]
      [math]=4x^2(-1)e^{-x}+4e^{-x}\frac{d}{dx}\Big[x^2\Big][/math]
      [math]=4e^{-x}\Big(\frac{d}{dx}\Big[x^2\Big]-x^2\Big)[/math]
      [math]=4e^{-x}\big(2x-x^2\big)[/math]
      [math]=4xe^{-x}(2-x)[/math]

See also