Difference between revisions of "Trace sigma-algebra"
From Maths
(Created page with "Let {{M|E\subseteq X}}, then {{M|1=\mathcal{A}_E:=\mathcal{A}\cap E:=\{A\cap E\vert A\in\mathcal{A}\} }} {{Todo|Measures Integrals and Martingales - page 16}} {{Definition|Me...") |
m (Added TOC) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | Let {{M| | + | {{Stub page|grade=B|More results would be good. Relation to pullback too}} |
− | {{ | + | __TOC__ |
− | + | ==Definition== | |
+ | Let {{M|(X,\mathcal{A})}} be a [[sigma-algebra|{{sigma|algebra}}]] and let {{M|Y\subseteq X}} be any [[subset]] of {{M|X}}, then we may construct a {{sigma|algebra}} on {{M|Y}} called the ''trace {{sigma|algebra}}'', {{M|\mathcal{A}_Y}} given by{{rMIAMRLS}}: | ||
+ | * {{M|1=\mathcal{A}_Y:=\left\{Y\cap A\ \vert A\in\mathcal{A}\right\} }} | ||
+ | '''Claim: ''' {{M|(Y,\mathcal{A}_Y)}} is a {{sigma|algebra}} | ||
+ | ==Proof of claims== | ||
+ | {{Begin Inline Theorem}} | ||
+ | '''[[Trace sigma-algebra/Proof of claim that it actually is a sigma-algebra|Claim 1]]: ''' that {{M|(Y,\mathcal{A}_Y)}} is indeed a [[sigma-algebra|{{sigma|algebra}}]] | ||
+ | {{Begin Inline Proof}} | ||
+ | {{:Trace sigma-algebra/Proof of claim that it actually is a sigma-algebra}} | ||
+ | {{End Proof}}{{End Theorem}} | ||
+ | ==References== | ||
+ | <references/> | ||
+ | {{Measure theory navbox|plain}} | ||
{{Definition|Measure Theory}} | {{Definition|Measure Theory}} |
Latest revision as of 12:00, 23 August 2018
Stub grade: B
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
More results would be good. Relation to pullback too
Contents
Definition
Let [ilmath](X,\mathcal{A})[/ilmath] be a [ilmath]\sigma[/ilmath]-algebra and let [ilmath]Y\subseteq X[/ilmath] be any subset of [ilmath]X[/ilmath], then we may construct a [ilmath]\sigma[/ilmath]-algebra on [ilmath]Y[/ilmath] called the trace [ilmath]\sigma[/ilmath]-algebra, [ilmath]\mathcal{A}_Y[/ilmath] given by[1]:
- [ilmath]\mathcal{A}_Y:=\left\{Y\cap A\ \vert A\in\mathcal{A}\right\}[/ilmath]
Claim: [ilmath](Y,\mathcal{A}_Y)[/ilmath] is a [ilmath]\sigma[/ilmath]-algebra
Proof of claims
Claim 1: that [ilmath](Y,\mathcal{A}_Y)[/ilmath] is indeed a [ilmath]\sigma[/ilmath]-algebra
(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
The message provided is:
Easy - just show definition
References
|