Difference between revisions of "Addition of vector spaces"

From Maths
Jump to: navigation, search
(Created page with " ==Definitions== {| class="wikitable" border="1" |- ! Name ! Expression ! Notes |- !colspan="3" | Finite |- |rowspan="3" | External direct sum | Given <math>V_1,\cdots,V_n...")
 
m
Line 37: Line 37:
 
<math>V_1+V_2+\cdots+V_n</math>
 
<math>V_1+V_2+\cdots+V_n</math>
 
|
 
|
 +
|-
 +
!colspan="3" | For any family of vectors (here {{M|K}} will denote an [[Indexing set|indexing set]] and <math>\mathcal{F}=\left\{V_i|i\in K\right\}</math> (a family of [[Vector space|vector spaces]] over {{M|F}}))
 
|-
 
|-
 
| [[Direct product]]
 
| [[Direct product]]
| Given <math>\mathcal{F}=\left\{V_i|i\in K\right\}</math> (a family of [[Vector space|vector spaces]] over {{M|F}})<br/>
+
| <math>V=\prod_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K\right\}</math>
<math>V=\prod_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K\right\}</math>
+
| Generalisation of the external direct sum
 +
|-
 +
|rowspan="3" | [[External direct sum]]
 +
| <math>V=\mathop{\boxplus}_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K,\ f\text{ has finite support}\right\}</math>
 +
| '''Note:''' <br/>
 +
* The alternative notation <math>\bigoplus_{i\in K}^\text{ext}</math> is sometimes used
 +
|-
 +
!colspan="2" | Finite support:
 +
|-
 +
| A function {{M|f}} has finite support if {{M|1=f(i)=0}} for all but finitely many {{M|i\in K}}
 +
| So it is "zero almost everywhere" - the set <math>\{f(i)|f(i)\ne 0\}</math> is finite.
 +
|-
 +
| [[Internal direct sum]]
 +
| <math>V=\bigoplus\mathcal{F}</math> or <math>V=\bigoplus_{i\in I}</math> where the following hold:
 +
# A
 +
# B
 
|}
 
|}
  

Revision as of 10:41, 24 April 2015

Definitions

Name Expression Notes
Finite
External direct sum Given V1,,Vn which are vector spaces over the same field F:

V=
Often written: V=V_1\boxplus V_2\boxplus\cdots\boxplus V_n

This is the easiest definition, for example \mathbb{R}^n=\mathop{\boxplus}^n_{i=1}\mathbb{R}=\underbrace{\mathbb{R}\boxplus\cdots\boxplus\mathbb{R}}_{n\text{ times}}

Operations: (given u,v\in V where u_i and c is a scalar in F)

  • (u_1,\cdots,u_n)+(v_1,\cdots,v_n)=(u_1+v_1,\cdots,u_n+v_n)
  • c(v_1,\cdots,v_n)=(cv_1,\cdots,cv_n)
Alternative form
V=\mathop{\boxplus}^n_{i=1}V_i=\left\{\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)\in V_i\ \forall i\in\{1,\cdots,n\}\right\} Consider the association:

(v_1,\cdots,v_n)\mapsto\left[\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)=v_i\ \forall i\right]
That is, that maps a vector to a function which takes a number from 1 to n to the i^\text{th} component, and:
Given a function f:\{1,\cdots,n\}\rightarrow\cup_{i=1}^nV_i where f(i)\in V_i\ \forall i we can define the following association:
f\mapsto(f(1),\cdots,f(n))
Thus:

  • V=\mathop{\boxplus}^n_{i=1}V_i=\left\{\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)\in V_i\ \forall i\right\}
  • V=\mathop{\boxplus}^n_{i=1}V_i=\left\{(v_1,\cdots,v_n)|v_i\in V_i,\ \forall i\right\}

Are isomorphic

Sum of vector spaces Given V_1,\cdots,V_n which are vector subspaces of V

\sum^n_{i=1}V_i=\left\{v_1+\cdots+v_n|v_i\in V_i,\ i=1,2,\cdots,n\right\}
Sometimes this is written: V_1+V_2+\cdots+V_n

For any family of vectors (here K will denote an indexing set and \mathcal{F}=\left\{V_i|i\in K\right\} (a family of vector spaces over F))
Direct product V=\prod_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K\right\} Generalisation of the external direct sum
External direct sum V=\mathop{\boxplus}_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K,\ f\text{ has finite support}\right\} Note:
  • The alternative notation \bigoplus_{i\in K}^\text{ext} is sometimes used
Finite support:
A function f has finite support if f(i)=0 for all but finitely many i\in K So it is "zero almost everywhere" - the set \{f(i)|f(i)\ne 0\} is finite.
Internal direct sum V=\bigoplus\mathcal{F} or V=\bigoplus_{i\in I} where the following hold:
  1. A
  2. B

References