Difference between revisions of "Addition of vector spaces"
(Created page with " ==Definitions== {| class="wikitable" border="1" |- ! Name ! Expression ! Notes |- !colspan="3" | Finite |- |rowspan="3" | External direct sum | Given <math>V_1,\cdots,V_n...") |
m |
||
Line 37: | Line 37: | ||
<math>V_1+V_2+\cdots+V_n</math> | <math>V_1+V_2+\cdots+V_n</math> | ||
| | | | ||
+ | |- | ||
+ | !colspan="3" | For any family of vectors (here {{M|K}} will denote an [[Indexing set|indexing set]] and <math>\mathcal{F}=\left\{V_i|i\in K\right\}</math> (a family of [[Vector space|vector spaces]] over {{M|F}})) | ||
|- | |- | ||
| [[Direct product]] | | [[Direct product]] | ||
− | | | + | | <math>V=\prod_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K\right\}</math> |
− | <math>V=\ | + | | Generalisation of the external direct sum |
+ | |- | ||
+ | |rowspan="3" | [[External direct sum]] | ||
+ | | <math>V=\mathop{\boxplus}_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K,\ f\text{ has finite support}\right\}</math> | ||
+ | | '''Note:''' <br/> | ||
+ | * The alternative notation <math>\bigoplus_{i\in K}^\text{ext}</math> is sometimes used | ||
+ | |- | ||
+ | !colspan="2" | Finite support: | ||
+ | |- | ||
+ | | A function {{M|f}} has finite support if {{M|1=f(i)=0}} for all but finitely many {{M|i\in K}} | ||
+ | | So it is "zero almost everywhere" - the set <math>\{f(i)|f(i)\ne 0\}</math> is finite. | ||
+ | |- | ||
+ | | [[Internal direct sum]] | ||
+ | | <math>V=\bigoplus\mathcal{F}</math> or <math>V=\bigoplus_{i\in I}</math> where the following hold: | ||
+ | # A | ||
+ | # B | ||
|} | |} | ||
Revision as of 10:41, 24 April 2015
Definitions
Name | Expression | Notes |
---|---|---|
Finite | ||
External direct sum | Given [math]V_1,\cdots,V_n[/math] which are vector spaces over the same field [ilmath]F[/ilmath]: [math]V=\mathop{\boxplus}^n_{i=1}V_i=\left\{(v_1,\cdots,v_n)|v_i\in V_i,\ i=1,2,\cdots,n\right\}[/math] |
This is the easiest definition, for example [math]\mathbb{R}^n=\mathop{\boxplus}^n_{i=1}\mathbb{R}=\underbrace{\mathbb{R}\boxplus\cdots\boxplus\mathbb{R}}_{n\text{ times}}[/math] Operations: (given [ilmath]u,v\in V[/ilmath] where [ilmath]u_i[/ilmath] and [ilmath]c[/ilmath] is a scalar in [ilmath]F[/ilmath])
|
Alternative form | ||
[math]V=\mathop{\boxplus}^n_{i=1}V_i=\left\{\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)\in V_i\ \forall i\in\{1,\cdots,n\}\right\}[/math] | Consider the association: [math](v_1,\cdots,v_n)\mapsto\left[\left.f:\{1,\cdots,n\}\rightarrow\bigcup_{i=1}^nV_i\right|f(i)=v_i\ \forall i\right][/math]
Are isomorphic | |
Sum of vector spaces | Given [ilmath]V_1,\cdots,V_n[/ilmath] which are vector subspaces of [ilmath]V[/ilmath] [math]\sum^n_{i=1}V_i=\left\{v_1+\cdots+v_n|v_i\in V_i,\ i=1,2,\cdots,n\right\}[/math] |
|
For any family of vectors (here [ilmath]K[/ilmath] will denote an indexing set and [math]\mathcal{F}=\left\{V_i|i\in K\right\}[/math] (a family of vector spaces over [ilmath]F[/ilmath])) | ||
Direct product | [math]V=\prod_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K\right\}[/math] | Generalisation of the external direct sum |
External direct sum | [math]V=\mathop{\boxplus}_{i\in K}V_i=\left\{\left.f:K\rightarrow\bigcup_{i\in K}V_i\right|f(i)\in V_i\ \forall i\in K,\ f\text{ has finite support}\right\}[/math] | Note:
|
Finite support: | ||
A function [ilmath]f[/ilmath] has finite support if [ilmath]f(i)=0[/ilmath] for all but finitely many [ilmath]i\in K[/ilmath] | So it is "zero almost everywhere" - the set [math]\{f(i)|f(i)\ne 0\}[/math] is finite. | |
Internal direct sum | [math]V=\bigoplus\mathcal{F}[/math] or [math]V=\bigoplus_{i\in I}[/math] where the following hold:
|