Difference between revisions of "Product rule"

From Maths
Jump to: navigation, search
(Created page with " ==Definition== Given two functions {{M|f:\mathbb{R}\rightarrow\mathbb{R} }} and {{M|g:\mathbb{R}\rightarrow\mathbb{R} }} which are differentiable (at {{M|p}}) the composite f...")
 
m (Example)
Line 12: Line 12:
 
**: <math>=4e^{-x}\Big(\frac{d}{dx}\Big[x^2\Big]-x^2\Big)</math>
 
**: <math>=4e^{-x}\Big(\frac{d}{dx}\Big[x^2\Big]-x^2\Big)</math>
 
**: <math>=4e^{-x}\big(2x-x^2\big)</math>
 
**: <math>=4e^{-x}\big(2x-x^2\big)</math>
**: <math>=4xe^{-x}\big(2-x^2\big)</math>
+
**: <math>=4xe^{-x}(2-x)</math>
 +
 
 
==See also==
 
==See also==
 
* [[Chain rule]]
 
* [[Chain rule]]
  
 
{{Todo|Make this page "proper"}}
 
{{Todo|Make this page "proper"}}

Revision as of 13:45, 16 April 2015

Definition

Given two functions f:RR and g:RR which are differentiable (at p) the composite function h:RR where h=fg has derivative:

  • dhdx|p=ddx[fg]|p=f(p)dgdx|p+g(p)dfdx|p
  • Phonetically first times derivative of second plus second times derivative of first

Example

  • 4x2ex
    • ddx[4x2ex]=4x2ddx[ex]+exddx[4x2]
      =4x2(1)ex+4exddx[x2]
      =4ex(ddx[x2]x2)
      =4ex(2xx2)
      =4xex(2x)

See also



TODO: Make this page "proper"