Difference between revisions of "Product rule"
From Maths
(Created page with " ==Definition== Given two functions {{M|f:\mathbb{R}\rightarrow\mathbb{R} }} and {{M|g:\mathbb{R}\rightarrow\mathbb{R} }} which are differentiable (at {{M|p}}) the composite f...") |
m (→Example) |
||
Line 12: | Line 12: | ||
**: <math>=4e^{-x}\Big(\frac{d}{dx}\Big[x^2\Big]-x^2\Big)</math> | **: <math>=4e^{-x}\Big(\frac{d}{dx}\Big[x^2\Big]-x^2\Big)</math> | ||
**: <math>=4e^{-x}\big(2x-x^2\big)</math> | **: <math>=4e^{-x}\big(2x-x^2\big)</math> | ||
− | **: <math>=4xe^{-x} | + | **: <math>=4xe^{-x}(2-x)</math> |
+ | |||
==See also== | ==See also== | ||
* [[Chain rule]] | * [[Chain rule]] | ||
{{Todo|Make this page "proper"}} | {{Todo|Make this page "proper"}} |
Revision as of 13:45, 16 April 2015
Definition
Given two functions f:R→R and g:R→R which are differentiable (at p) the composite function h:R→R where h=fg has derivative:
- dhdx|p=ddx[fg]|p=f(p)dgdx|p+g(p)dfdx|p
- Phonetically first times derivative of second plus second times derivative of first
Example
- 4x2e−x
- ddx[4x2e−x]=4x2ddx[e−x]+e−xddx[4x2]
- =4x2(−1)e−x+4e−xddx[x2]
- =4e−x(ddx[x2]−x2)
- =4e−x(2x−x2)
- =4xe−x(2−x)
- ddx[4x2e−x]=4x2ddx[e−x]+e−xddx[4x2]
See also
TODO: Make this page "proper"