Difference between revisions of "Smooth map"
From Maths
m |
m |
||
(One intermediate revision by the same user not shown) | |||
Line 6: | Line 6: | ||
* <math>\forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B}</math> such that <math>F(U)\subseteq V\wedge[\psi\circ F\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)]</math> is [[Smooth|smooth]] | * <math>\forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B}</math> such that <math>F(U)\subseteq V\wedge[\psi\circ F\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)]</math> is [[Smooth|smooth]] | ||
+ | |||
+ | <!--See p35 intro to smooth manifolds - there are equiv definitions, but there's more to them--> | ||
+ | <!-- | ||
===Via commutative diagrams=== | ===Via commutative diagrams=== | ||
A map is smooth if the following diagram commutes: | A map is smooth if the following diagram commutes: | ||
Line 21: | Line 24: | ||
* {{M|(U,\varphi)\in\mathcal{A} }} | * {{M|(U,\varphi)\in\mathcal{A} }} | ||
* {{M|(V,\psi)\in\mathcal{B} }} | * {{M|(V,\psi)\in\mathcal{B} }} | ||
− | + | --> | |
==See also== | ==See also== |
Latest revision as of 21:37, 14 April 2015
\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} } Note: not to be confused with smooth function
Definition
A map f:M\rightarrow N between two smooth manifolds (M,\mathcal{A}) and (N,\mathcal{B}) (of not necessarily the same dimension) is said to be smooth[1] if:
- \forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B} such that F(U)\subseteq V\wedge[\psi\circ F\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)] is smooth
See also
References
- Jump up ↑ Introduction to smooth manifolds - John M Lee - Second Edition