Difference between revisions of "Smooth map"

From Maths
Jump to: navigation, search
m
m
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
 
* <math>\forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B}</math> such that <math>F(U)\subseteq V\wedge[\psi\circ F\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)]</math> is [[Smooth|smooth]]
 
* <math>\forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B}</math> such that <math>F(U)\subseteq V\wedge[\psi\circ F\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)]</math> is [[Smooth|smooth]]
  
 +
 +
<!--See p35 intro to smooth manifolds - there are equiv definitions, but there's more to them-->
 +
<!--
 
===Via commutative diagrams===
 
===Via commutative diagrams===
 
A map is smooth if the following diagram commutes:
 
A map is smooth if the following diagram commutes:
Line 21: Line 24:
 
* {{M|(U,\varphi)\in\mathcal{A} }}
 
* {{M|(U,\varphi)\in\mathcal{A} }}
 
* {{M|(V,\psi)\in\mathcal{B} }}
 
* {{M|(V,\psi)\in\mathcal{B} }}
 
+
-->
  
 
==See also==
 
==See also==

Latest revision as of 21:37, 14 April 2015

[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math] Note: not to be confused with smooth function

Definition

A map [ilmath]f:M\rightarrow N[/ilmath] between two smooth manifolds [ilmath](M,\mathcal{A})[/ilmath] and [ilmath](N,\mathcal{B})[/ilmath] (of not necessarily the same dimension) is said to be smooth[1] if:

  • [math]\forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B}[/math] such that [math]F(U)\subseteq V\wedge[\psi\circ F\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)][/math] is smooth


See also

References

  1. Introduction to smooth manifolds - John M Lee - Second Edition