Difference between revisions of "Smooth map"

From Maths
Jump to: navigation, search
(Created page with "==Definition== A map {{M|f:M\rightarrow N}} between two smooth manifolds {{M|(M,\mathcal{A})}} and {{M|(N,\mathcal{B})}} (of not necessarily the same dimen...")
 
m
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
{{Extra Maths}}
 +
'''Note: ''' not to be confused with [[Smooth function|smooth function]]
 +
 
==Definition==
 
==Definition==
 
A map {{M|f:M\rightarrow N}} between two [[Smooth manifold|smooth manifolds]] {{M|(M,\mathcal{A})}} and {{M|(N,\mathcal{B})}} (of not necessarily the same dimension) is said to be smooth<ref>Introduction to smooth manifolds - John M Lee - Second Edition</ref> if:
 
A map {{M|f:M\rightarrow N}} between two [[Smooth manifold|smooth manifolds]] {{M|(M,\mathcal{A})}} and {{M|(N,\mathcal{B})}} (of not necessarily the same dimension) is said to be smooth<ref>Introduction to smooth manifolds - John M Lee - Second Edition</ref> if:
* <math>\forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B}</math> such that <math>F(U)\subseteq V\wedge \psi\circ F\circ\varphi^{-1}</math> is [[Smooth|smooth]]
+
* <math>\forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B}</math> such that <math>F(U)\subseteq V\wedge[\psi\circ F\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)]</math> is [[Smooth|smooth]]
 +
 
 +
 
 +
<!--See p35 intro to smooth manifolds - there are equiv definitions, but there's more to them-->
 +
<!--
 +
===Via commutative diagrams===
 +
A map is smooth if the following diagram commutes:
 +
 
 +
[math]\begin{CD}
 +
M {{CD Right Arrow|F}} N\\
 +
{{CD Down Arrow|\varphi}} {{CD Down Arrow||\psi}}\\
 +
\varphi(U) {{CD Right Arrow|G|2==\psi\circ F\circ\varphi^{-1} }} \psi(V)
 +
\end{CD}[/math]
 +
 
 +
Where:
 +
* {{M|G}} is [[Smooth|smooth]]
 +
** (given by {{M|1=G=\psi\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V) }})
 +
* {{M|M,N}} are [[Smooth manifold|smooth manifolds]] (with [[Smooth structure|smooth structures]]) {{M|\mathcal{A},\mathcal{B} }} respectively
 +
* {{M|(U,\varphi)\in\mathcal{A} }}
 +
* {{M|(V,\psi)\in\mathcal{B} }}
 +
-->
 +
 
 +
==See also==
 +
* [[Differential of a smooth map]]
 +
* [[Smooth function]]
 +
* [[Smooth manifold]]
 +
 
 
==References==
 
==References==
 
<references/>
 
<references/>
  
 
{{Definition|Manifolds}}
 
{{Definition|Manifolds}}

Latest revision as of 21:37, 14 April 2015

[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math] Note: not to be confused with smooth function

Definition

A map [ilmath]f:M\rightarrow N[/ilmath] between two smooth manifolds [ilmath](M,\mathcal{A})[/ilmath] and [ilmath](N,\mathcal{B})[/ilmath] (of not necessarily the same dimension) is said to be smooth[1] if:

  • [math]\forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B}[/math] such that [math]F(U)\subseteq V\wedge[\psi\circ F\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)][/math] is smooth


See also

References

  1. Introduction to smooth manifolds - John M Lee - Second Edition