Difference between revisions of "Quotient topology"

From Maths
Jump to: navigation, search
m
m
Line 1: Line 1:
<math>\require{AMScd}</math>
 
<math>\begin{equation}\begin{CD}
 
S^{{\mathcal{W}}_\Lambda}\otimes T @>j>> T\\
 
@VVV @VV{\End P}V\\
 
(S\otimes T)/I @= (Z\otimes T)/J
 
\end{CD}\end{equation}</math>
 
 
 
==Quotient map==
 
==Quotient map==
 
Let {{M|(X,\mathcal{J})}} and {{M|(Y,\mathcal{K})}} be [[Topological space|topological spaces]] and let {{M|p:X\rightarrow Y}} be a [[Surjection|surjective]] map.
 
Let {{M|(X,\mathcal{J})}} and {{M|(Y,\mathcal{K})}} be [[Topological space|topological spaces]] and let {{M|p:X\rightarrow Y}} be a [[Surjection|surjective]] map.

Revision as of 09:22, 7 April 2015

Quotient map

Let [ilmath](X,\mathcal{J})[/ilmath] and [ilmath](Y,\mathcal{K})[/ilmath] be topological spaces and let [ilmath]p:X\rightarrow Y[/ilmath] be a surjective map.


[ilmath]p[/ilmath] is a quotient map[1] if we have [math]U\in\mathcal{K}\iff p^{-1}(U)\in\mathcal{J}[/math]

Notes

Stronger than continuity

If we had [ilmath]\mathcal{K}=\{\emptyset,Y\}[/ilmath] then [ilmath]p[/ilmath] is automatically continuous (as it is surjective), the point is that [ilmath]\mathcal{K} [/ilmath] is the largest topology we can define on [ilmath]Y[/ilmath] such that [ilmath]p[/ilmath] is continuous


See Motivation for quotient topology for a discussion on where this goes.

Definition

If [math](X,\mathcal{J})[/math] is a topological space, [math]A[/math] is a set, and [math]p:(X,\mathcal{J})\rightarrow A[/math] is a surjective map then there exists exactly one topology [math]\mathcal{J}_Q[/math] relative to which [math]p[/math] is a quotient map. This is the quotient topology induced by [math]p[/math]



TODO: Munkres page 138



References

  1. Topology - Second Edition - James R Munkres