Difference between revisions of "Quotient topology"
(Created page with "==Definition== If <math>(X,\mathcal{J})</math> is a topological space, <math>A</math> is a set, and <math>p:(X,\mathcal{J})\rightarrow A</math> is a Su...") |
m |
||
Line 1: | Line 1: | ||
+ | ==Quotient map== | ||
+ | Let {{M|(X,\mathcal{J})}} and {{M|(Y,\mathcal{K})}} be [[Topological space|topological spaces]] and let {{M|p:X\rightarrow Y}} be a [[Surjection|surjective]] map. | ||
+ | |||
+ | |||
+ | {{M|p}} is a quotient map<ref>Topology - Second Edition - James R Munkres</ref> if we have <math>U\in\mathcal{K}\iff p^{-1}(U)\in\mathcal{J}</math> | ||
+ | |||
+ | ===Notes=== | ||
+ | ====Stronger than continuity==== | ||
+ | If we had {{M|1=\mathcal{K}=\{\emptyset,Y\} }} then {{M|p}} is automatically continuous (as it is surjective), the point is that {{M|\mathcal{K} }} is the [[Topology#Finer.2C_Larger.2C_Stronger|largest topology]] we can define on {{M|Y}} such that {{M|p}} is continuous | ||
+ | |||
==Definition== | ==Definition== | ||
If <math>(X,\mathcal{J})</math> is a [[Topological space|topological space]], <math>A</math> is a set, and <math>p:(X,\mathcal{J})\rightarrow A</math> is a [[Surjection|surjective map]] then there exists '''exactly one''' topology <math>\mathcal{J}_Q</math> relative to which <math>p</math> is a quotient map. This is the '''quotient topology''' induced by <math>p</math> | If <math>(X,\mathcal{J})</math> is a [[Topological space|topological space]], <math>A</math> is a set, and <math>p:(X,\mathcal{J})\rightarrow A</math> is a [[Surjection|surjective map]] then there exists '''exactly one''' topology <math>\mathcal{J}_Q</math> relative to which <math>p</math> is a quotient map. This is the '''quotient topology''' induced by <math>p</math> | ||
{{Todo|Munkres page 138}} | {{Todo|Munkres page 138}} | ||
+ | |||
+ | ==References== | ||
+ | <references/> | ||
{{Definition|Topology}} | {{Definition|Topology}} |
Revision as of 08:43, 7 April 2015
Quotient map
Let [ilmath](X,\mathcal{J})[/ilmath] and [ilmath](Y,\mathcal{K})[/ilmath] be topological spaces and let [ilmath]p:X\rightarrow Y[/ilmath] be a surjective map.
[ilmath]p[/ilmath] is a quotient map[1] if we have [math]U\in\mathcal{K}\iff p^{-1}(U)\in\mathcal{J}[/math]
Notes
Stronger than continuity
If we had [ilmath]\mathcal{K}=\{\emptyset,Y\}[/ilmath] then [ilmath]p[/ilmath] is automatically continuous (as it is surjective), the point is that [ilmath]\mathcal{K} [/ilmath] is the largest topology we can define on [ilmath]Y[/ilmath] such that [ilmath]p[/ilmath] is continuous
Definition
If [math](X,\mathcal{J})[/math] is a topological space, [math]A[/math] is a set, and [math]p:(X,\mathcal{J})\rightarrow A[/math] is a surjective map then there exists exactly one topology [math]\mathcal{J}_Q[/math] relative to which [math]p[/math] is a quotient map. This is the quotient topology induced by [math]p[/math]
TODO: Munkres page 138
References
- ↑ Topology - Second Edition - James R Munkres