Difference between revisions of "Quotient topology"

From Maths
Jump to: navigation, search
(Created page with "==Definition== If <math>(X,\mathcal{J})</math> is a topological space, <math>A</math> is a set, and <math>p:(X,\mathcal{J})\rightarrow A</math> is a Su...")
 
m
Line 1: Line 1:
 +
==Quotient map==
 +
Let {{M|(X,\mathcal{J})}} and {{M|(Y,\mathcal{K})}} be [[Topological space|topological spaces]] and let {{M|p:X\rightarrow Y}} be a [[Surjection|surjective]] map.
 +
 +
 +
{{M|p}} is a quotient map<ref>Topology - Second Edition - James R Munkres</ref> if we have <math>U\in\mathcal{K}\iff p^{-1}(U)\in\mathcal{J}</math>
 +
 +
===Notes===
 +
====Stronger than continuity====
 +
If we had {{M|1=\mathcal{K}=\{\emptyset,Y\} }} then {{M|p}} is automatically continuous (as it is surjective), the point is that {{M|\mathcal{K} }} is the [[Topology#Finer.2C_Larger.2C_Stronger|largest topology]] we can define on {{M|Y}} such that {{M|p}} is continuous
 +
 
==Definition==
 
==Definition==
 
If <math>(X,\mathcal{J})</math> is a [[Topological space|topological space]], <math>A</math> is a set, and <math>p:(X,\mathcal{J})\rightarrow A</math> is a [[Surjection|surjective map]] then there exists '''exactly one''' topology <math>\mathcal{J}_Q</math> relative to which <math>p</math> is a quotient map. This is the '''quotient topology''' induced by <math>p</math>
 
If <math>(X,\mathcal{J})</math> is a [[Topological space|topological space]], <math>A</math> is a set, and <math>p:(X,\mathcal{J})\rightarrow A</math> is a [[Surjection|surjective map]] then there exists '''exactly one''' topology <math>\mathcal{J}_Q</math> relative to which <math>p</math> is a quotient map. This is the '''quotient topology''' induced by <math>p</math>
  
 
{{Todo|Munkres page 138}}
 
{{Todo|Munkres page 138}}
 +
 +
==References==
 +
<references/>
  
  
 
{{Definition|Topology}}
 
{{Definition|Topology}}

Revision as of 08:43, 7 April 2015

Quotient map

Let [ilmath](X,\mathcal{J})[/ilmath] and [ilmath](Y,\mathcal{K})[/ilmath] be topological spaces and let [ilmath]p:X\rightarrow Y[/ilmath] be a surjective map.


[ilmath]p[/ilmath] is a quotient map[1] if we have [math]U\in\mathcal{K}\iff p^{-1}(U)\in\mathcal{J}[/math]

Notes

Stronger than continuity

If we had [ilmath]\mathcal{K}=\{\emptyset,Y\}[/ilmath] then [ilmath]p[/ilmath] is automatically continuous (as it is surjective), the point is that [ilmath]\mathcal{K} [/ilmath] is the largest topology we can define on [ilmath]Y[/ilmath] such that [ilmath]p[/ilmath] is continuous

Definition

If [math](X,\mathcal{J})[/math] is a topological space, [math]A[/math] is a set, and [math]p:(X,\mathcal{J})\rightarrow A[/math] is a surjective map then there exists exactly one topology [math]\mathcal{J}_Q[/math] relative to which [math]p[/math] is a quotient map. This is the quotient topology induced by [math]p[/math]



TODO: Munkres page 138



References

  1. Topology - Second Edition - James R Munkres