Difference between revisions of "Measurable map"
From Maths
m |
m |
||
Line 5: | Line 5: | ||
<math>T^{-1}(A')\in\mathcal{A},\ \forall A'\in\mathcal{A}'</math> | <math>T^{-1}(A')\in\mathcal{A},\ \forall A'\in\mathcal{A}'</math> | ||
+ | |||
+ | ==Notation== | ||
+ | A given a [[Measure space|measure space]] (a measurable space equipped with a measure) {{M|(X,\mathcal{A},\mu)}} with a measurable map on the following mean the same thing: | ||
+ | * <math>T:(X,\mathcal{A},\mu)\rightarrow(X',\mathcal{A}',\bar{\mu})</math> (if {{M|(X',\mathcal{A}')}} is also equipped with a measure) | ||
+ | * <math>T:(X,\mathcal{A},\mu)\rightarrow(X',\mathcal{A}')</math> | ||
+ | * <math>T:(X,\mathcal{A})\rightarrow(X',\mathcal{A}')</math> | ||
+ | |||
+ | We would write <math>T:(X,\mathcal{A},\mu)\rightarrow(X',\mathcal{A}')</math> simply to remind ourselves of the measure we are using, it is not important to the concept of the measurable map. | ||
+ | |||
+ | ==Motivation== | ||
+ | From the topic of [[Random variable|random variables]] - which a special case of measurable maps (where the domain can be equipped with a probability measure, a measure where {{M|X}} has measure 1). | ||
+ | |||
+ | |||
+ | Consider: <math>X:(\Omega,\mathcal{A},\mathbb{P})\rightarrow(V,\mathcal{U})</math>, we know that given a {{M|U\in\mathcal{U} }} that {{M|T^{-1}\in\mathcal{A} }} which means we can measure it using {{M|\mathbb{P} }}, which is something we'd want to do. | ||
+ | |||
+ | {{Begin Example}} | ||
+ | Example using sum of two die RV | ||
+ | {{Begin Example Body}} | ||
+ | Take <math>\Omega=\{(a,b)|a,b\in\mathbb{N}\, a,b\in[1,6]\}</math> and <math>\mathcal{A}=\sigma(\Omega)=\mathcal{P}(\Omega)</math>, define <math>\mathbb{P}:\mathcal{P}(\Omega)\rightarrow[0,1]\subset\mathbb{R}</math> by <math>\mathbb{P}(A)\mapsto \frac{1}{36}|A|</math> | ||
+ | |||
+ | Take the random variable <math>X:(\Omega,\mathcal{P}(\Omega),\mathbb{P})\rightarrow(\{2,\cdots,12\},\mathcal{P}(\{2,\cdots,12\}))</math> which assigns each {{M|(a,b)}} to {{M|a+b}} - the sum of the scores. | ||
+ | |||
+ | It is clear for example that only <math>\{(1,2),(2,1)\}</math> thus the probability of getting 3 as the sum is 2 out of 36 or {{M|\frac{1}{18} }} | ||
+ | {{End Example Body}} | ||
+ | {{End Example}} | ||
+ | |||
{{Definition|Measure Theory}} | {{Definition|Measure Theory}} |
Revision as of 10:18, 22 March 2015
Definition
Let (X,A) and (X′,A′) be measurable spaces
Then a map T:X→X′ is called A/A′-measurable if
T−1(A′)∈A, ∀A′∈A′
Notation
A given a measure space (a measurable space equipped with a measure) (X,A,μ) with a measurable map on the following mean the same thing:
- T:(X,A,μ)→(X′,A′,ˉμ)(if (X′,A′) is also equipped with a measure)
- T:(X,A,μ)→(X′,A′)
- T:(X,A)→(X′,A′)
We would write T:(X,A,μ)→(X′,A′) simply to remind ourselves of the measure we are using, it is not important to the concept of the measurable map.
Motivation
From the topic of random variables - which a special case of measurable maps (where the domain can be equipped with a probability measure, a measure where X has measure 1).
Consider: X:(Ω,A,P)→(V,U), we know that given a U∈U that T−1∈A which means we can measure it using P, which is something we'd want to do.
[Expand]
Example using sum of two die RV