Difference between revisions of "Index of notation"

From Maths
Jump to: navigation, search
m
m
Line 26: Line 26:
 
| <math>\|f\|_{L^p}=\left(\int^1_0|f(t)|^pdt\right)^\frac{1}{p}</math> - it is a [[Norm]] on <math>\mathcal{C}([0,1],\mathbb{R})</math>
 
| <math>\|f\|_{L^p}=\left(\int^1_0|f(t)|^pdt\right)^\frac{1}{p}</math> - it is a [[Norm]] on <math>\mathcal{C}([0,1],\mathbb{R})</math>
 
|-
 
|-
| <math>C([a,b],\mathbb{R})</math>
+
| <math>\|f\|_\infty</math>
|  
+
|
 
* Functional Analysis
 
* Functional Analysis
 
* Real Analysis
 
* Real Analysis
| It is the set of all functions <math>:[a,b]\rightarrow\mathbb{R}</math> that are [[Continuous map|continuous]]
+
| It is a norm on <math>C([a,b],\mathbb{R})</math>, given by <math>\|f\|_\infty=\sup_{x\in[a,b]}(|f(x)|)</math>
 
|-
 
|-
 
| <math>C^k([a,b],\mathbb{R})</math>
 
| <math>C^k([a,b],\mathbb{R})</math>

Revision as of 13:33, 18 March 2015

\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }Ordered symbols are notations which are (likely) to appear as they are given here, for example C([a,b],\mathbb{R}) denotes the continuous function on the interval [a,b] that map to \mathbb{R} - this is unlikely to be given any other way because "C" is for continuous.

Ordered symbols

These are ordered by symbols, and then by LaTeX names secondly, for example A comes before \mathbb{A} comes before \mathcal{A}

Expression Context Details
\|\cdot\|
  • Functional Analysis
  • Real Analysis
Denotes the Norm of a vector
\|f\|_{C^k}
  • Functional Analysis
This Norm is defined by \|f\|_{C^k}=\sum^k_{i=0}\sup_{t\in[0,1]}(|f^{(i)}(t)|) - note f^{(i)} is the i^\text{th} derivative.
\|f\|_{L^p}
  • Functional Analysis
\|f\|_{L^p}=\left(\int^1_0|f(t)|^pdt\right)^\frac{1}{p} - it is a Norm on \mathcal{C}([0,1],\mathbb{R})
\|f\|_\infty
  • Functional Analysis
  • Real Analysis
It is a norm on C([a,b],\mathbb{R}), given by \|f\|_\infty=\sup_{x\in[a,b]}(|f(x)|)
C^k([a,b],\mathbb{R})
  • Functional Analysis
  • Real Analysis
It is the set of all functions :[a,b]\rightarrow\mathbb{R} that are continuous and have continuous derivatives up to (and including) order k

The unit interval will be assumed when missing

\bigudot_i A_i Makes it explicit that the items in the union (the A_i) are pairwise disjoint, that is for any two their intersection is empty
\ell^p(\mathbb{F})
  • Functional Analysis
The set of all bounded sequences, that is \ell^p(\mathbb{F})=\{(x_1,x_2,...)|x_i\in\mathbb{F},\ \sum^\infty_{i=1}|x_i|^p<\infty\}
\mathcal{L}^p
  • Measure Theory
\mathcal{L}^p(\mu)=\{u:X\rightarrow\mathbb{R}|u\in\mathcal{M},\ \int|u|^pd\mu<\infty\},\ p\in[1,\infty)\subset\mathbb{R}

(X,\mathcal{A},\mu) is a measure space. The class of all measurable functions for which |f|^p is integrable

L^p
  • Measure Theory
Same as \mathcal{L}^p

Unordered symbols

Expression Context Details
\mathcal{A}/\mathcal{B}-measurable
  • Measure Theory
There exists a Measurable map between the \sigma-algebras