Difference between revisions of "Measure"

From Maths
Jump to: navigation, search
m
m
Line 30: Line 30:
 
|}
 
|}
  
 +
==Examples==
 +
* [[Dirac measure]]
 +
* [[Counting measure]]
 +
* [[Discrete probability measure]]
 +
 +
===Trivial measures===
 +
Given the [[Measurable space]] {{M|(X,\mathcal{A})}} we can define:
 +
 +
<math>\mu:\mathcal{A}\rightarrow\{0,+\infty\}</math> by <math>\mu(A)=\left\{\begin{array}{lr}
 +
0 & \text{if }A=\emptyset \\
 +
+\infty & \text{otherwise}
 +
\end{array}\right.</math>
 +
 +
Another trivial measure is:
 +
 +
<math>v:\mathcal{A}\rightarrow\{0\}</math> by <math>v(A)=0</math> for all <math>A\in\mathcal{A}</math>
 +
 +
==See also==
 +
* [[Pre-measure]]
 +
* [[Outer-measure]]
 
{{Definition|Measure Theory}}
 
{{Definition|Measure Theory}}

Revision as of 18:27, 15 March 2015

\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }Not to be confused with Pre-measure


Definition

A \sigma-ring \mathcal{A} and a countably additive, extended real valued. non-negative set function \mu:\mathcal{A}\rightarrow[0,\infty] is a measure.

Contrast with pre-measure

Note: the family A_n must be pairwise disjoint

Property Measure Pre-measure
\mu:\mathcal{A}\rightarrow[0,\infty] \mu_0:R\rightarrow[0,\infty]
\mu(\emptyset)=0 \mu_0(\emptyset)=0
Finitely additive \mu(\bigudot^n_{i=1}A_i)=\sum^n_{i=1}\mu(A_i) \mu_0(\bigudot^n_{i=1}A_i)=\sum^n_{i=1}\mu_0(A_i)
Countably additive \mu(\bigudot^\infty_{n=1}A_n)=\sum^\infty_{n=1}\mu(A_n) If \bigudot^\infty_{n=1}A_n\in R then \mu_0(\bigudot^\infty_{n=1}A_n)=\sum^\infty_{n=1}\mu_0(A_n)

Examples

Trivial measures

Given the Measurable space (X,\mathcal{A}) we can define:

\mu:\mathcal{A}\rightarrow\{0,+\infty\} by \mu(A)=\left\{\begin{array}{lr} 0 & \text{if }A=\emptyset \\ +\infty & \text{otherwise} \end{array}\right.

Another trivial measure is:

v:\mathcal{A}\rightarrow\{0\} by v(A)=0 for all A\in\mathcal{A}

See also