Difference between revisions of "Homotopy"

From Maths
Jump to: navigation, search
(Another go. I don't like this either)
m (Made "stages of the homotopy" bold.)
Line 4: Line 4:
 
==Definition==
 
==Definition==
 
Given two [[topological spaces]], {{Top.|X|J}} and {{Top.|Y|K}} then a ''homotopy of maps (from {{M|X}} to {{M|Y}})'' is a ''[[continuous]]'' [[function]]: {{M|F:X\times I\rightarrow Y}} (where {{M|I}} denotes the [[unit interval]], {{M|1=I:=[0,1]\subset\mathbb{R} }}). Note:
 
Given two [[topological spaces]], {{Top.|X|J}} and {{Top.|Y|K}} then a ''homotopy of maps (from {{M|X}} to {{M|Y}})'' is a ''[[continuous]]'' [[function]]: {{M|F:X\times I\rightarrow Y}} (where {{M|I}} denotes the [[unit interval]], {{M|1=I:=[0,1]\subset\mathbb{R} }}). Note:
* The ''stages of the homotopy, {{M|F}},'' are a family of functions, {{M|\{ f_t:X\rightarrow Y\ \vert\ t\in[0,1]\} }} such that {{M|f_t:x\rightarrow F(x,t)}}. [[The stages of a homotopy are continuous]].
+
* The '''''stages of the homotopy, {{M|F}},''''' are a family of functions, {{M|\{ f_t:X\rightarrow Y\ \vert\ t\in[0,1]\} }} such that {{M|f_t:x\rightarrow F(x,t)}}. [[The stages of a homotopy are continuous]].
 
** {{M|f_0}} and {{M|f_1}} are examples of stages, and are often called the ''initial stage of the homotopy'' and ''final stage of the homotopy'' respectively.
 
** {{M|f_0}} and {{M|f_1}} are examples of stages, and are often called the ''initial stage of the homotopy'' and ''final stage of the homotopy'' respectively.
 
Two ([[continuous]]) functions, {{M|g,h:X\rightarrow Y}} are said to be ''homotopic'' if there exists a homotopy such that {{M|1=f_0=g}} and {{M|1=f_1=h}}
 
Two ([[continuous]]) functions, {{M|g,h:X\rightarrow Y}} are said to be ''homotopic'' if there exists a homotopy such that {{M|1=f_0=g}} and {{M|1=f_1=h}}

Revision as of 20:30, 12 May 2016

Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.
Grade: A
This page requires references, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.

Definition

Given two topological spaces, (X,J) and (Y,K) then a homotopy of maps (from X to Y) is a continuous function: F:X×IY (where I denotes the unit interval, I:=[0,1]R). Note:

  • The stages of the homotopy, F, are a family of functions, {ft:XY | t[0,1]} such that ft:xF(x,t). The stages of a homotopy are continuous.
    • f0 and f1 are examples of stages, and are often called the initial stage of the homotopy and final stage of the homotopy respectively.

Two (continuous) functions, g,h:XY are said to be homotopic if there exists a homotopy such that f0=g and f1=h

Claim: homotopy of maps is an equivalence relation[Note 1]

Notes

  1. Jump up Do not shorten this to "homotopy equivalence" as homotopy equivalence of spaces is something very different

References

Template:Algebraic topology navbox