Difference between revisions of "Passing to the quotient (topology)"

From Maths
Jump to: navigation, search
(Saving work)
 
m
Line 2: Line 2:
 
{{:Passing to the quotient (topology)/Statement}}
 
{{:Passing to the quotient (topology)/Statement}}
 
==Proof==
 
==Proof==
 
+
==Notes==
 +
<references group="Note"/>
 
==References==
 
==References==
 
<references/>
 
<references/>
 
{{Topology navbox|plain}}
 
{{Topology navbox|plain}}
 
{{Theorem Of|Topology}}
 
{{Theorem Of|Topology}}

Revision as of 13:35, 27 April 2016

Statement

[ilmath]\xymatrix{ X \ar[d]_\pi \ar[dr]^f & \\ \frac{X}{\sim} \ar@{.>}[r]^{\overline{f} }& Y}[/ilmath]
[ilmath]f[/ilmath] descends to the quotient

Suppose that [ilmath](X,\mathcal{ J })[/ilmath] is a topological space and [ilmath]\sim[/ilmath] is an equivalence relation, let [ilmath](\frac{X}{\sim},\mathcal{ Q })[/ilmath] be the resulting quotient topology and [ilmath]\pi:X\rightarrow\frac{X}{\sim} [/ilmath] the resulting quotient map, then:

  • Let [ilmath](Y,\mathcal{ K })[/ilmath] be any topological space and let [ilmath]f:X\rightarrow Y[/ilmath] be a continuous map that is constant on the fibres of [ilmath]\pi[/ilmath][Note 1] then:
  • there exists a unique continuous map, [ilmath]\bar{f}:\frac{X}{\sim}\rightarrow Y[/ilmath] such that [ilmath]f=\overline{f}\circ\pi[/ilmath]

We may then say [ilmath]f[/ilmath] descends to the quotient or passes to the quotient

Note: this is an instance of passing-to-the-quotient for functions

Proof

Notes

  1. That means that:

References