Difference between revisions of "Equivalence of Cauchy sequences/Proof"

From Maths
Jump to: navigation, search
(Created page with "<noinclude> ==Statement== {{:Equivalence of Cauchy sequences/Definition}} And that this indeed actually defines an equivalence relation ==Proof== </noinclude> '''Reflexivi...")
 
(Added proofs for all 3 statements in a first-year friendly way. Will mark parent page as exemplary/first-year friendly.)
 
Line 5: Line 5:
 
==Proof==
 
==Proof==
 
</noinclude>
 
</noinclude>
'''Reflexivity'''
+
'''[[Reflexive relation|Reflexivity]]''' - We must show that {{MSeq|a_n|post=\sim{{MSeq|a_n|nomath=true}}}}
{{Requires proof}}
+
* Let {{M|\epsilon>0}} be given.
'''Transitivity'''
+
** Pick {{M|1=N=1}} (any {{M|N\in\mathbb{N} }} will work)
{{Requires proof}}
+
*** Let {{M|n\in\mathbb{N} }} be given
'''Symmetry'''
+
*** There are 2 cases now, either {{M|n>N}} or {{M|n\le N}}
{{Requires proof}}
+
***# If {{M|n>N}} then by the nature of [[implies]] we require the RHS to be true, we require {{M|d(a_n,a_n)<\epsilon}} to be true.
 +
***#* Notice {{M|1=d(a_n,a_n)=0}} by the definition of a [[metric]]
 +
***#** As {{M|\epsilon>0}} we see {{M|1=d(a_n,a_n)=0<\epsilon}}
 +
***#* So {{M|d(a_n,a_n)<\epsilon}} is true, as required in this case.
 +
***# If {{M|n\le N}} by the nature of [[implies]] we don't care about the RHS, it can be either true or false.
 +
***#* It must be either true or false
 +
***#* So we're done
 +
This completes the proof that {{MSeq|a_n}} is equivalent to {{MSeq|a_n}}
 +
 
 +
 
 +
'''[[Transitive relation|Transitivity]]''' - we must show that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} and {{MSeq|b_n|post=\sim {{MSeq|c_n|nomath=1}}}} {{M|\implies}} {{MSeq|a_n|post=\sim {{MSeq|c_n|nomath=1}}}}
 +
{{Begin Notebox}}
 +
Workings to determine the gist of the proof
 +
{{Begin Notebox Content}}
 +
Let {{M|\epsilon >0}} be given, we need to show:
 +
* {{M|d(a_n,c_n)<\epsilon}}
 +
But by the [[metric|triangle inequality property of a metric]] we know that:
 +
* {{M|d(a,c)\le d(a,b)+d(b,c)}} for all {{M|b}} in the space.
 +
If we can show that {{M|d(a,b)+d(b,c)<\epsilon}} then we'd be done.
 +
 
 +
 
 +
By hypothesis:
 +
* {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}} and:
 +
* {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(b_n,c_n)<\epsilon]}}
 +
That is we may pick any number we like, as long as it is {{M|>0}} and there is an {{M|N\in\mathbb{N} }} such that for any natural number larger than {{M|N}} the distance between either {{M|a_n}} and {{M|b_n}}, or {{M|b_n}} and {{M|c_n}} is less than that picked number.
 +
 
 +
 
 +
Looking at {{M|d(a,b)+d(b,c)<\epsilon}}, we can see that if we have {{M|d(a,b)<\frac{\epsilon}{2} }} and {{M|d(b,c)<\frac{\epsilon}{2} }} then we'd have:
 +
* {{M|1=d(a,b)+d(b,c)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon}} or
 +
* {{M|1=d(a,b)+d(b,c)<\epsilon}} '''{{M|\longleftarrow}}this is exactly what we're looking to do'''
 +
 
 +
 
 +
Note that if {{M|\epsilon>0}} then {{M|\frac{\epsilon}{2}>0}} too.
 +
 
 +
 
 +
By hypothesis we see for a positive number, {{M|\frac{\epsilon}{2} }} there exists an {{M|N_1}} and {{M|N_2}} such that for all {{M|n\in\mathbb{N} }} if:
 +
* {{M|n>N_1}} then we have {{M|d(a_n,b_n)<\frac{\epsilon}{2} }} and
 +
* {{M|n>N_2}} then we have {{M|d(b_n,c_n)<\frac{\epsilon}{2} }}
 +
 
 +
 
 +
If we pick {{M|1=N=\text{max}(N_1,N_2)}} then {{M|\forall n\in\mathbb{N} }} with {{M|n>N}} both {{M|d(a_n,b_n)}} and {{M|d(b_n,c_n)}} are {{M|<\frac{\epsilon}{2} }}
 +
: (as {{M|n>N\implies n>N_1\text{ and }n>N_2}} - this is why we use the largest of {{M|N_1}} and {{M|N_2}})
 +
 
 +
Thus we have:
 +
* {{M|1=d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon}}, or:
 +
* {{M|1=d(a_n,c_n)<\epsilon}} - as required.
 +
{{End Notebox Content}}{{End Notebox}}
 +
* Let {{M|\epsilon>0}} be given.
 +
** By hypothesis know both:
 +
**# {{M|\forall\epsilon>0\exists N_1\in\mathbb{N}\forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\epsilon]}} and:
 +
**# {{M|\forall\epsilon>0\exists N_2\in\mathbb{N}\forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\epsilon]}} to be true.
 +
** Note that {{M|\epsilon>0\implies\frac{\epsilon}{2}>0}}, and in both of the hypothesised statements above, it is true ''for all'' {{M|\epsilon>0}}
 +
** Pick {{M|N_1\in\mathbb{N} }} using the first statement with {{M|\frac{\epsilon}{2} }} as the positive number, now:
 +
*** {{M|\forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\frac{\epsilon}{2}]}}
 +
** Pick {{M|N_2\in\mathbb{N} }} using the second statement with {{M|\frac{\epsilon}{2} }} as the positive number, now:
 +
*** {{M|\forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\frac{\epsilon}{2}]}}
 +
** Pick for {{M|N\in\mathbb{N} }} the value {{M|1=N=\text{max}(N_1,N_2)}}
 +
*** Now for {{M|n>N}} both {{M|d(a_n,b_n)}} and {{M|d(b_n,c_n)}} are {{M|<\frac{\epsilon}{2} }}
 +
*** Let {{M|n\in\mathbb{N} }} be given, there are 2 cases now, {{M|n>N}} or {{M|n\le N}}
 +
***# If {{M|n>N}} then by the nature of [[implies]] we must show {{M|d(a_n,c_n)<\epsilon}} to be true
 +
***#* Notice: {{M|1=d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n)}} (by the [[metric|triangle inequality property of a metric]]) and:
 +
***#** {{M|1=d(a_n,b_n)+d(b_n,c_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon}}
 +
***#* Thus we have {{M|1=d(a_n,c_n)<\epsilon}} - as required
 +
***# If {{M|n\le N}} by the nature of [[implies]] we don't actually care if {{M|d(a_n,c_n)<\epsilon}} is true or false.
 +
***#* As it must be either true or false, we are done.
 +
This completes the proof that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} and {{MSeq|b_n|post=\sim {{MSeq|c_n|nomath=1}}}} {{M|\implies}} {{MSeq|a_n|post=\sim {{MSeq|c_n|nomath=1}}}}
 +
 
 +
 
 +
'''[[Symmetric relation|Symmetry]]''' - that is that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} {{M|\implies}} {{MSeq|b_n|post=\sim {{MSeq|a_n|nomath=1}}}}
 +
{{Begin Notebox}}
 +
Workings to find the gist of the proof
 +
{{Begin Notebox Content}}
 +
Notice we have:
 +
* {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}} and we want:
 +
* {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(b_n,a_n)<\epsilon]}}
 +
 
 +
But by the [[metric|symmetric property of a metric]] we see that {{M|1=d(a_n,b_n)=d(b_n,a_n)}}
 +
 
 +
Thus, if {{M|d(a_n,b_n)<epsilon}} we see {{M|1=d(b_n,a_n)=d(a_n,b_n)<\epsilon}}, so {{M|d(b_n,a_n)<\epsilon}} too!
 +
{{End Notebox Content}}{{End Notebox}}
 +
* Let {{M|\epsilon>0}} be given.
 +
** By hypothesis we have:
 +
*** {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}}
 +
** Choose {{M|N}} to be the {{M|N\in\mathbb{N} }} which exists by hypothesis for our given {{M|\epsilon}}
 +
*** Let {{M|n\in\mathbb{N} }} be given, there are now two cases, {{M|n>N}} and {{M|n\le N}}
 +
***# if {{M|n>N}} then by the nature of [[implies]] we require {{M|d(b_n,a_n)<\epsilon}} to be true.
 +
***#* Notice {{M|1=d(b_n,a_n)=d(a_n,b_n)}} [[metric|by the symmetric property of a metric]] and
 +
***#** By our hypothesis, for our {{M|N}}, {{M|n>N\implies d(a_n,b_n)<\epsilon}}
 +
***#* Thus {{M|1=d(b_n,a_n)=d(a_n,b_n)<\epsilon}} and
 +
***#* {{M|d(b_n,a_n)<\epsilon}} as required
 +
***# if {{M|n\le N}} then by the nature of [[implies]] the RHS can be either true or false, and the implies condition is satisfied.
 +
***#* As {{M|d(b_n,a_n)<\epsilon}} is a statement that can only be either true or false, we see that this is satisfied
 +
This completes the proof that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} {{M|\implies}} {{MSeq|b_n|post=\sim {{MSeq|a_n|nomath=1}}}}
 
<noinclude>
 
<noinclude>
 
==References==
 
==References==

Latest revision as of 21:02, 20 April 2016

Statement

Given two Cauchy sequences, (an)n=1 and (bn)n=1 in a metric space (X,d) we define them as equivalent if[1]:

  • ϵ>0NNnN[n>Nd(an,bn)<ϵ]

And that this indeed actually defines an equivalence relation

Proof

Reflexivity - We must show that (an)n=1(an)n=1

  • Let ϵ>0 be given.
    • Pick N=1 (any NN will work)
      • Let nN be given
      • There are 2 cases now, either n>N or nN
        1. If n>N then by the nature of implies we require the RHS to be true, we require d(an,an)<ϵ to be true.
          • Notice d(an,an)=0 by the definition of a metric
            • As ϵ>0 we see d(an,an)=0<ϵ
          • So d(an,an)<ϵ is true, as required in this case.
        2. If nN by the nature of implies we don't care about the RHS, it can be either true or false.
          • It must be either true or false
          • So we're done

This completes the proof that (an)n=1 is equivalent to (an)n=1


Transitivity - we must show that (an)n=1(bn)n=1 and (bn)n=1(cn)n=1 (an)n=1(cn)n=1

[Expand]

Workings to determine the gist of the proof

  • Let \epsilon>0 be given.
    • By hypothesis know both:
      1. \forall\epsilon>0\exists N_1\in\mathbb{N}\forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\epsilon] and:
      2. \forall\epsilon>0\exists N_2\in\mathbb{N}\forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\epsilon] to be true.
    • Note that \epsilon>0\implies\frac{\epsilon}{2}>0, and in both of the hypothesised statements above, it is true for all \epsilon>0
    • Pick N_1\in\mathbb{N} using the first statement with \frac{\epsilon}{2} as the positive number, now:
      • \forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\frac{\epsilon}{2}]
    • Pick N_2\in\mathbb{N} using the second statement with \frac{\epsilon}{2} as the positive number, now:
      • \forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\frac{\epsilon}{2}]
    • Pick for N\in\mathbb{N} the value N=\text{max}(N_1,N_2)
      • Now for n>N both d(a_n,b_n) and d(b_n,c_n) are <\frac{\epsilon}{2}
      • Let n\in\mathbb{N} be given, there are 2 cases now, n>N or n\le N
        1. If n>N then by the nature of implies we must show d(a_n,c_n)<\epsilon to be true
          • Notice: d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n) (by the triangle inequality property of a metric) and:
            • d(a_n,b_n)+d(b_n,c_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
          • Thus we have d(a_n,c_n)<\epsilon - as required
        2. If n\le N by the nature of implies we don't actually care if d(a_n,c_n)<\epsilon is true or false.
          • As it must be either true or false, we are done.

This completes the proof that ({ a_n })_{ n = 1 }^{ \infty } \sim ({ b_n })_{ n = 1 }^{ \infty } and ({ b_n })_{ n = 1 }^{ \infty } \sim ({ c_n })_{ n = 1 }^{ \infty } \implies ({ a_n })_{ n = 1 }^{ \infty } \sim ({ c_n })_{ n = 1 }^{ \infty }


Symmetry - that is that ({ a_n })_{ n = 1 }^{ \infty } \sim ({ b_n })_{ n = 1 }^{ \infty } \implies ({ b_n })_{ n = 1 }^{ \infty } \sim ({ a_n })_{ n = 1 }^{ \infty }

[Expand]

Workings to find the gist of the proof

  • Let \epsilon>0 be given.
    • By hypothesis we have:
      • \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]
    • Choose N to be the N\in\mathbb{N} which exists by hypothesis for our given \epsilon
      • Let n\in\mathbb{N} be given, there are now two cases, n>N and n\le N
        1. if n>N then by the nature of implies we require d(b_n,a_n)<\epsilon to be true.
          • Notice d(b_n,a_n)=d(a_n,b_n) by the symmetric property of a metric and
            • By our hypothesis, for our N, n>N\implies d(a_n,b_n)<\epsilon
          • Thus d(b_n,a_n)=d(a_n,b_n)<\epsilon and
          • d(b_n,a_n)<\epsilon as required
        2. if n\le N then by the nature of implies the RHS can be either true or false, and the implies condition is satisfied.
          • As d(b_n,a_n)<\epsilon is a statement that can only be either true or false, we see that this is satisfied

This completes the proof that ({ a_n })_{ n = 1 }^{ \infty } \sim ({ b_n })_{ n = 1 }^{ \infty } \implies ({ b_n })_{ n = 1 }^{ \infty } \sim ({ a_n })_{ n = 1 }^{ \infty }

References

  1. Jump up Analysis - Part 1: Elements - Krzysztof Maurin