Difference between revisions of "Equivalence of Cauchy sequences/Proof"
(Created page with "<noinclude> ==Statement== {{:Equivalence of Cauchy sequences/Definition}} And that this indeed actually defines an equivalence relation ==Proof== </noinclude> '''Reflexivi...") |
(Added proofs for all 3 statements in a first-year friendly way. Will mark parent page as exemplary/first-year friendly.) |
||
Line 5: | Line 5: | ||
==Proof== | ==Proof== | ||
</noinclude> | </noinclude> | ||
− | '''Reflexivity''' | + | '''[[Reflexive relation|Reflexivity]]''' - We must show that {{MSeq|a_n|post=\sim{{MSeq|a_n|nomath=true}}}} |
− | {{ | + | * Let {{M|\epsilon>0}} be given. |
− | '''Transitivity''' | + | ** Pick {{M|1=N=1}} (any {{M|N\in\mathbb{N} }} will work) |
− | {{ | + | *** Let {{M|n\in\mathbb{N} }} be given |
− | '''Symmetry''' | + | *** There are 2 cases now, either {{M|n>N}} or {{M|n\le N}} |
− | {{ | + | ***# If {{M|n>N}} then by the nature of [[implies]] we require the RHS to be true, we require {{M|d(a_n,a_n)<\epsilon}} to be true. |
+ | ***#* Notice {{M|1=d(a_n,a_n)=0}} by the definition of a [[metric]] | ||
+ | ***#** As {{M|\epsilon>0}} we see {{M|1=d(a_n,a_n)=0<\epsilon}} | ||
+ | ***#* So {{M|d(a_n,a_n)<\epsilon}} is true, as required in this case. | ||
+ | ***# If {{M|n\le N}} by the nature of [[implies]] we don't care about the RHS, it can be either true or false. | ||
+ | ***#* It must be either true or false | ||
+ | ***#* So we're done | ||
+ | This completes the proof that {{MSeq|a_n}} is equivalent to {{MSeq|a_n}} | ||
+ | |||
+ | |||
+ | '''[[Transitive relation|Transitivity]]''' - we must show that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} and {{MSeq|b_n|post=\sim {{MSeq|c_n|nomath=1}}}} {{M|\implies}} {{MSeq|a_n|post=\sim {{MSeq|c_n|nomath=1}}}} | ||
+ | {{Begin Notebox}} | ||
+ | Workings to determine the gist of the proof | ||
+ | {{Begin Notebox Content}} | ||
+ | Let {{M|\epsilon >0}} be given, we need to show: | ||
+ | * {{M|d(a_n,c_n)<\epsilon}} | ||
+ | But by the [[metric|triangle inequality property of a metric]] we know that: | ||
+ | * {{M|d(a,c)\le d(a,b)+d(b,c)}} for all {{M|b}} in the space. | ||
+ | If we can show that {{M|d(a,b)+d(b,c)<\epsilon}} then we'd be done. | ||
+ | |||
+ | |||
+ | By hypothesis: | ||
+ | * {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}} and: | ||
+ | * {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(b_n,c_n)<\epsilon]}} | ||
+ | That is we may pick any number we like, as long as it is {{M|>0}} and there is an {{M|N\in\mathbb{N} }} such that for any natural number larger than {{M|N}} the distance between either {{M|a_n}} and {{M|b_n}}, or {{M|b_n}} and {{M|c_n}} is less than that picked number. | ||
+ | |||
+ | |||
+ | Looking at {{M|d(a,b)+d(b,c)<\epsilon}}, we can see that if we have {{M|d(a,b)<\frac{\epsilon}{2} }} and {{M|d(b,c)<\frac{\epsilon}{2} }} then we'd have: | ||
+ | * {{M|1=d(a,b)+d(b,c)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon}} or | ||
+ | * {{M|1=d(a,b)+d(b,c)<\epsilon}} '''{{M|\longleftarrow}}this is exactly what we're looking to do''' | ||
+ | |||
+ | |||
+ | Note that if {{M|\epsilon>0}} then {{M|\frac{\epsilon}{2}>0}} too. | ||
+ | |||
+ | |||
+ | By hypothesis we see for a positive number, {{M|\frac{\epsilon}{2} }} there exists an {{M|N_1}} and {{M|N_2}} such that for all {{M|n\in\mathbb{N} }} if: | ||
+ | * {{M|n>N_1}} then we have {{M|d(a_n,b_n)<\frac{\epsilon}{2} }} and | ||
+ | * {{M|n>N_2}} then we have {{M|d(b_n,c_n)<\frac{\epsilon}{2} }} | ||
+ | |||
+ | |||
+ | If we pick {{M|1=N=\text{max}(N_1,N_2)}} then {{M|\forall n\in\mathbb{N} }} with {{M|n>N}} both {{M|d(a_n,b_n)}} and {{M|d(b_n,c_n)}} are {{M|<\frac{\epsilon}{2} }} | ||
+ | : (as {{M|n>N\implies n>N_1\text{ and }n>N_2}} - this is why we use the largest of {{M|N_1}} and {{M|N_2}}) | ||
+ | |||
+ | Thus we have: | ||
+ | * {{M|1=d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon}}, or: | ||
+ | * {{M|1=d(a_n,c_n)<\epsilon}} - as required. | ||
+ | {{End Notebox Content}}{{End Notebox}} | ||
+ | * Let {{M|\epsilon>0}} be given. | ||
+ | ** By hypothesis know both: | ||
+ | **# {{M|\forall\epsilon>0\exists N_1\in\mathbb{N}\forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\epsilon]}} and: | ||
+ | **# {{M|\forall\epsilon>0\exists N_2\in\mathbb{N}\forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\epsilon]}} to be true. | ||
+ | ** Note that {{M|\epsilon>0\implies\frac{\epsilon}{2}>0}}, and in both of the hypothesised statements above, it is true ''for all'' {{M|\epsilon>0}} | ||
+ | ** Pick {{M|N_1\in\mathbb{N} }} using the first statement with {{M|\frac{\epsilon}{2} }} as the positive number, now: | ||
+ | *** {{M|\forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\frac{\epsilon}{2}]}} | ||
+ | ** Pick {{M|N_2\in\mathbb{N} }} using the second statement with {{M|\frac{\epsilon}{2} }} as the positive number, now: | ||
+ | *** {{M|\forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\frac{\epsilon}{2}]}} | ||
+ | ** Pick for {{M|N\in\mathbb{N} }} the value {{M|1=N=\text{max}(N_1,N_2)}} | ||
+ | *** Now for {{M|n>N}} both {{M|d(a_n,b_n)}} and {{M|d(b_n,c_n)}} are {{M|<\frac{\epsilon}{2} }} | ||
+ | *** Let {{M|n\in\mathbb{N} }} be given, there are 2 cases now, {{M|n>N}} or {{M|n\le N}} | ||
+ | ***# If {{M|n>N}} then by the nature of [[implies]] we must show {{M|d(a_n,c_n)<\epsilon}} to be true | ||
+ | ***#* Notice: {{M|1=d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n)}} (by the [[metric|triangle inequality property of a metric]]) and: | ||
+ | ***#** {{M|1=d(a_n,b_n)+d(b_n,c_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon}} | ||
+ | ***#* Thus we have {{M|1=d(a_n,c_n)<\epsilon}} - as required | ||
+ | ***# If {{M|n\le N}} by the nature of [[implies]] we don't actually care if {{M|d(a_n,c_n)<\epsilon}} is true or false. | ||
+ | ***#* As it must be either true or false, we are done. | ||
+ | This completes the proof that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} and {{MSeq|b_n|post=\sim {{MSeq|c_n|nomath=1}}}} {{M|\implies}} {{MSeq|a_n|post=\sim {{MSeq|c_n|nomath=1}}}} | ||
+ | |||
+ | |||
+ | '''[[Symmetric relation|Symmetry]]''' - that is that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} {{M|\implies}} {{MSeq|b_n|post=\sim {{MSeq|a_n|nomath=1}}}} | ||
+ | {{Begin Notebox}} | ||
+ | Workings to find the gist of the proof | ||
+ | {{Begin Notebox Content}} | ||
+ | Notice we have: | ||
+ | * {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}} and we want: | ||
+ | * {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(b_n,a_n)<\epsilon]}} | ||
+ | |||
+ | But by the [[metric|symmetric property of a metric]] we see that {{M|1=d(a_n,b_n)=d(b_n,a_n)}} | ||
+ | |||
+ | Thus, if {{M|d(a_n,b_n)<epsilon}} we see {{M|1=d(b_n,a_n)=d(a_n,b_n)<\epsilon}}, so {{M|d(b_n,a_n)<\epsilon}} too! | ||
+ | {{End Notebox Content}}{{End Notebox}} | ||
+ | * Let {{M|\epsilon>0}} be given. | ||
+ | ** By hypothesis we have: | ||
+ | *** {{M|\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}} | ||
+ | ** Choose {{M|N}} to be the {{M|N\in\mathbb{N} }} which exists by hypothesis for our given {{M|\epsilon}} | ||
+ | *** Let {{M|n\in\mathbb{N} }} be given, there are now two cases, {{M|n>N}} and {{M|n\le N}} | ||
+ | ***# if {{M|n>N}} then by the nature of [[implies]] we require {{M|d(b_n,a_n)<\epsilon}} to be true. | ||
+ | ***#* Notice {{M|1=d(b_n,a_n)=d(a_n,b_n)}} [[metric|by the symmetric property of a metric]] and | ||
+ | ***#** By our hypothesis, for our {{M|N}}, {{M|n>N\implies d(a_n,b_n)<\epsilon}} | ||
+ | ***#* Thus {{M|1=d(b_n,a_n)=d(a_n,b_n)<\epsilon}} and | ||
+ | ***#* {{M|d(b_n,a_n)<\epsilon}} as required | ||
+ | ***# if {{M|n\le N}} then by the nature of [[implies]] the RHS can be either true or false, and the implies condition is satisfied. | ||
+ | ***#* As {{M|d(b_n,a_n)<\epsilon}} is a statement that can only be either true or false, we see that this is satisfied | ||
+ | This completes the proof that {{MSeq|a_n|post=\sim {{MSeq|b_n|nomath=1}}}} {{M|\implies}} {{MSeq|b_n|post=\sim {{MSeq|a_n|nomath=1}}}} | ||
<noinclude> | <noinclude> | ||
==References== | ==References== |
Latest revision as of 21:02, 20 April 2016
Statement
Given two Cauchy sequences, (an)∞n=1 and (bn)∞n=1 in a metric space (X,d) we define them as equivalent if[1]:
- ∀ϵ>0∃N∈N∀n∈N[n>N⟹d(an,bn)<ϵ]
And that this indeed actually defines an equivalence relation
Proof
Reflexivity - We must show that (an)∞n=1∼(an)∞n=1
- Let ϵ>0 be given.
- Pick N=1 (any N∈N will work)
- Let n∈N be given
- There are 2 cases now, either n>N or n≤N
- If n>N then by the nature of implies we require the RHS to be true, we require d(an,an)<ϵ to be true.
- Notice d(an,an)=0 by the definition of a metric
- As ϵ>0 we see d(an,an)=0<ϵ
- So d(an,an)<ϵ is true, as required in this case.
- Notice d(an,an)=0 by the definition of a metric
- If n≤N by the nature of implies we don't care about the RHS, it can be either true or false.
- It must be either true or false
- So we're done
- If n>N then by the nature of implies we require the RHS to be true, we require d(an,an)<ϵ to be true.
- Pick N=1 (any N∈N will work)
This completes the proof that (an)∞n=1 is equivalent to (an)∞n=1
Transitivity - we must show that (an)∞n=1∼(bn)∞n=1 and (bn)∞n=1∼(cn)∞n=1 ⟹ (an)∞n=1∼(cn)∞n=1
Workings to determine the gist of the proof
- Let \epsilon>0 be given.
- By hypothesis know both:
- \forall\epsilon>0\exists N_1\in\mathbb{N}\forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\epsilon] and:
- \forall\epsilon>0\exists N_2\in\mathbb{N}\forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\epsilon] to be true.
- Note that \epsilon>0\implies\frac{\epsilon}{2}>0, and in both of the hypothesised statements above, it is true for all \epsilon>0
- Pick N_1\in\mathbb{N} using the first statement with \frac{\epsilon}{2} as the positive number, now:
- \forall n\in\mathbb{N}[n>N_1\implies d(a_n,b_n)<\frac{\epsilon}{2}]
- Pick N_2\in\mathbb{N} using the second statement with \frac{\epsilon}{2} as the positive number, now:
- \forall n\in\mathbb{N}[n>N_2\implies d(b_n,c_n)<\frac{\epsilon}{2}]
- Pick for N\in\mathbb{N} the value N=\text{max}(N_1,N_2)
- Now for n>N both d(a_n,b_n) and d(b_n,c_n) are <\frac{\epsilon}{2}
- Let n\in\mathbb{N} be given, there are 2 cases now, n>N or n\le N
- If n>N then by the nature of implies we must show d(a_n,c_n)<\epsilon to be true
- Notice: d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n) (by the triangle inequality property of a metric) and:
- d(a_n,b_n)+d(b_n,c_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
- Thus we have d(a_n,c_n)<\epsilon - as required
- Notice: d(a_n,c_n)\le d(a_n,b_n)+d(b_n,c_n) (by the triangle inequality property of a metric) and:
- If n\le N by the nature of implies we don't actually care if d(a_n,c_n)<\epsilon is true or false.
- As it must be either true or false, we are done.
- If n>N then by the nature of implies we must show d(a_n,c_n)<\epsilon to be true
- By hypothesis know both:
This completes the proof that ({ a_n })_{ n = 1 }^{ \infty } \sim ({ b_n })_{ n = 1 }^{ \infty } and ({ b_n })_{ n = 1 }^{ \infty } \sim ({ c_n })_{ n = 1 }^{ \infty } \implies ({ a_n })_{ n = 1 }^{ \infty } \sim ({ c_n })_{ n = 1 }^{ \infty }
Symmetry - that is that ({ a_n })_{ n = 1 }^{ \infty } \sim ({ b_n })_{ n = 1 }^{ \infty } \implies ({ b_n })_{ n = 1 }^{ \infty } \sim ({ a_n })_{ n = 1 }^{ \infty }
Workings to find the gist of the proof
- Let \epsilon>0 be given.
- By hypothesis we have:
- \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]
- Choose N to be the N\in\mathbb{N} which exists by hypothesis for our given \epsilon
- Let n\in\mathbb{N} be given, there are now two cases, n>N and n\le N
- if n>N then by the nature of implies we require d(b_n,a_n)<\epsilon to be true.
- Notice d(b_n,a_n)=d(a_n,b_n) by the symmetric property of a metric and
- By our hypothesis, for our N, n>N\implies d(a_n,b_n)<\epsilon
- Thus d(b_n,a_n)=d(a_n,b_n)<\epsilon and
- d(b_n,a_n)<\epsilon as required
- Notice d(b_n,a_n)=d(a_n,b_n) by the symmetric property of a metric and
- if n\le N then by the nature of implies the RHS can be either true or false, and the implies condition is satisfied.
- As d(b_n,a_n)<\epsilon is a statement that can only be either true or false, we see that this is satisfied
- if n>N then by the nature of implies we require d(b_n,a_n)<\epsilon to be true.
- Let n\in\mathbb{N} be given, there are now two cases, n>N and n\le N
- By hypothesis we have:
This completes the proof that ({ a_n })_{ n = 1 }^{ \infty } \sim ({ b_n })_{ n = 1 }^{ \infty } \implies ({ b_n })_{ n = 1 }^{ \infty } \sim ({ a_n })_{ n = 1 }^{ \infty }
References
- Theorems
- Theorems, lemmas and corollaries
- Metric Space Theorems
- Metric Space Theorems, lemmas and corollaries
- Metric Space
- Topology Theorems
- Topology Theorems, lemmas and corollaries
- Topology
- Functional Analysis Theorems
- Functional Analysis Theorems, lemmas and corollaries
- Functional Analysis
- Analysis Theorems
- Analysis Theorems, lemmas and corollaries
- Analysis