Difference between revisions of "Trace sigma-algebra"
From Maths
(Overhaul of page) |
m |
||
Line 1: | Line 1: | ||
− | {{Stub page}} | + | {{Stub page|grade=A}} |
{{Requires references|"Trace", but it's a subspace concept! Find more references}} | {{Requires references|"Trace", but it's a subspace concept! Find more references}} | ||
==Definition== | ==Definition== |
Revision as of 21:30, 19 April 2016
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.
(Unknown grade)
This page requires references, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable, it just means that the author of the page doesn't have a book to hand, or remember the book to find it, which would have been a suitable reference.
The message provided is:
The message provided is:
"Trace", but it's a subspace concept! Find more references
Definition
Let [ilmath](X,\mathcal{A})[/ilmath] be a [ilmath]\sigma[/ilmath]-algebra and let [ilmath]Y\subseteq X[/ilmath] be any subset of [ilmath]X[/ilmath], then we may construct a [ilmath]\sigma[/ilmath]-algebra on [ilmath]Y[/ilmath] called the trace [ilmath]\sigma[/ilmath]-algebra, [ilmath]\mathcal{A}_Y[/ilmath] given by[1]:
- [ilmath]\mathcal{A}_Y:=\left\{Y\cap A\ \vert A\in\mathcal{A}\right\}[/ilmath]
Claim: [ilmath](Y,\mathcal{A}_Y)[/ilmath] is a [ilmath]\sigma[/ilmath]-algebra
Proof of claims
Claim 1: that [ilmath](Y,\mathcal{A}_Y)[/ilmath] is indeed a [ilmath]\sigma[/ilmath]-algebra
(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
The message provided is:
Easy - just show definition
References
|