Difference between revisions of "Simple function (measure theory)/Definition"

From Maths
Jump to: navigation, search
(Created page with "<noinclude> ==Definition== </noinclude> A ''simple function'' {{M|f:X\rightarrow\mathbb{R} }} on a measurable space {{M|(X,\mathcal{A})}} is a{{rMIAMRLS}}: * function of t...")
 
m
 
Line 1: Line 1:
 
<noinclude>
 
<noinclude>
 
==Definition==
 
==Definition==
</noinclude>
+
</noinclude>A ''simple function'' {{M|f:X\rightarrow\mathbb{R} }} on a [[measurable space]] {{M|(X,\mathcal{A})}} is a{{rMIAMRLS}}:
A ''simple function'' {{M|f:X\rightarrow\mathbb{R} }} on a [[measurable space]] {{M|(X,\mathcal{A})}} is a{{rMIAMRLS}}:
+
 
* function of the form {{M|1=\sum^N_{i=1}x_i\mathbf{1}_{A_i}(x)}} for
 
* function of the form {{M|1=\sum^N_{i=1}x_i\mathbf{1}_{A_i}(x)}} for
 
* finitely many sets, {{M|A_1,\ldots,A_N\in\mathcal{A} }} and
 
* finitely many sets, {{M|A_1,\ldots,A_N\in\mathcal{A} }} and

Latest revision as of 17:06, 17 March 2016

Definition

A simple function f:XR on a measurable space (X,A) is a[1]:

  • function of the form Ni=1xi1Ai(x) for
  • finitely many sets, A1,,ANA and
  • finitely many x1,,xnR

References

  1. Jump up Measures, Integrals and Martingales - René L. Schilling