Difference between revisions of "Limit"
From Maths
(Created page with " ==Definition== A limit allows us to sidestep the notion of infinity and to allow us to potentially extend the domain of functions {| class="wikitable" border="1" |- ! Class...") |
m (→Definition) |
||
| Line 32: | Line 32: | ||
| | | | ||
* <math>\forall C>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies |a_n|> C]</math> | * <math>\forall C>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies |a_n|> C]</math> | ||
| + | |- | ||
| + | | Limit of a function at {{M|x_0}} | ||
| + | | converging to {{M|\ell}} | ||
| + | | {{MM|1=\lim_{x\rightarrow x_0}(f(x))=\ell}} | ||
| + | | {{MM|1=\forall \epsilon>0\exists\delta>0\forall x\in X\left[0<d(x,x_0)<\delta\implies d'(f(x),\ell)<\epsilon\right]}} | ||
|} | |} | ||
| + | |||
| + | {{Todo|I like the idea of a summary page, but it needs to link to the right pages and have definitions in place}} | ||
(See [[Infinity]]) | (See [[Infinity]]) | ||
{{Definition|Real Analysis}} | {{Definition|Real Analysis}} | ||
Latest revision as of 18:23, 8 January 2016
Definition
A limit allows us to sidestep the notion of infinity and to allow us to potentially extend the domain of functions
| Class | Name | Form | Meaning |
|---|---|---|---|
| Limit of a sequence | converging to [ilmath]a[/ilmath] | [math]\lim_{n\rightarrow\infty}(a_n)=a[/math] |
|
| Tending towards [ilmath]+\infty[/ilmath] | [math]\lim_{n\rightarrow\infty}(a_n)=+\infty[/math] |
| |
| Tending towards [ilmath]-\infty[/ilmath] | [math]\lim_{n\rightarrow\infty}(a_n)=-\infty[/math] |
| |
| Diverging to [ilmath]\infty[/ilmath] | [math]\lim_{n\rightarrow\infty}(a_n)=\infty[/math] |
| |
| Limit of a function at [ilmath]x_0[/ilmath] | converging to [ilmath]\ell[/ilmath] | [math]\lim_{x\rightarrow x_0}(f(x))=\ell[/math] | [math]\forall \epsilon>0\exists\delta>0\forall x\in X\left[0<d(x,x_0)<\delta\implies d'(f(x),\ell)<\epsilon\right][/math] |
TODO: I like the idea of a summary page, but it needs to link to the right pages and have definitions in place
(See Infinity)