Difference between revisions of "Limit"

From Maths
Jump to: navigation, search
(Created page with " ==Definition== A limit allows us to sidestep the notion of infinity and to allow us to potentially extend the domain of functions {| class="wikitable" border="1" |- ! Class...")
 
m (Definition)
 
Line 32: Line 32:
 
|
 
|
 
* <math>\forall C>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies |a_n|> C]</math>
 
* <math>\forall C>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies |a_n|> C]</math>
 +
|-
 +
| Limit of a function at {{M|x_0}}
 +
| converging to {{M|\ell}}
 +
| {{MM|1=\lim_{x\rightarrow x_0}(f(x))=\ell}}
 +
| {{MM|1=\forall \epsilon>0\exists\delta>0\forall x\in X\left[0<d(x,x_0)<\delta\implies d'(f(x),\ell)<\epsilon\right]}}
 
|}
 
|}
 +
 +
{{Todo|I like the idea of a summary page, but it needs to link to the right pages and have definitions in place}}
  
 
(See [[Infinity]])
 
(See [[Infinity]])
  
 
{{Definition|Real Analysis}}
 
{{Definition|Real Analysis}}

Latest revision as of 18:23, 8 January 2016

Definition

A limit allows us to sidestep the notion of infinity and to allow us to potentially extend the domain of functions

Class Name Form Meaning
Limit of a sequence converging to a lim
  • \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies |a_n-a|<\epsilon] - first form
  • \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies d(a_n,a)<\epsilon] - Metric space (X,d)
  • \forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}\exists U\in\mathcal{J}[a\in U\wedge(n> N \implies a_n\in U)] - Topological space (X,\mathcal{J})
Tending towards +\infty \lim_{n\rightarrow\infty}(a_n)=+\infty
  • \forall C>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies a_n> C]
Tending towards -\infty \lim_{n\rightarrow\infty}(a_n)=-\infty
  • \forall C<0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies a_n< C]
Diverging to \infty \lim_{n\rightarrow\infty}(a_n)=\infty
  • \forall C>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n> N\implies |a_n|> C]
Limit of a function at x_0 converging to \ell \lim_{x\rightarrow x_0}(f(x))=\ell \forall \epsilon>0\exists\delta>0\forall x\in X\left[0<d(x,x_0)<\delta\implies d'(f(x),\ell)<\epsilon\right]



TODO: I like the idea of a summary page, but it needs to link to the right pages and have definitions in place



(See Infinity)