Difference between revisions of "Norm"

From Maths
Jump to: navigation, search
m
m (Definition)
Line 5: Line 5:
 
__TOC__
 
__TOC__
 
==Definition==
 
==Definition==
A norm on a [[Vector space|vector space]] {{M|(V,F)}} (where {{M|F}} is either {{M|\mathbb{R} }} or {{M|\mathbb{C} }}) is a function <math>\|\cdot\|:V\rightarrow\mathbb{R}</math> such that<ref name="KMAPI">Analysis - Part 1: Elements - Krzysztof Maurin</ref><ref name="FA">Functional Analysis - George Bachman and Lawrence Narici</ref><ref name="FAAGI">Functional Analysis - A Gentle Introduction - Volume 1, by Dzung Minh Ha</ref><sup>{{Highlight|See warning <ref group="Note">A lot of books, including the brilliant Analysis by K. Maurin referenced here imply ''explicitly'' that it is possible for {{M|\Vert\cdot,\cdot\Vert:V\rightarrow\mathbb{C} }} they are wrong. I assure you that it is {{M|\Vert\cdot\Vert:V\rightarrow\mathbb{R}_{\ge 0} }}. Other than this the references are valid</ref>}}</sup>:
+
A norm on a [[Vector space|vector space]] {{M|(V,F)}} (where {{M|F}} is either {{M|\mathbb{R} }} or {{M|\mathbb{C} }}) is a function <math>\|\cdot\|:V\rightarrow\mathbb{R}</math> such that<ref name="KMAPI">Analysis - Part 1: Elements - Krzysztof Maurin</ref><ref name="FA">Functional Analysis - George Bachman and Lawrence Narici</ref><ref name="FAAGI">Functional Analysis - A Gentle Introduction - Volume 1, by Dzung Minh Ha</ref>{{RRAAAHS}}<sup>{{Highlight|See warning notes:<ref group="Note">A lot of books, including the brilliant [[Books:Analysis - Part 1: Elements - Krzysztof Maurin|Analysis - Part 1: Elements - Krzysztof Maurin]] referenced here state ''explicitly'' that it is possible for {{M|\Vert\cdot,\cdot\Vert:V\rightarrow\mathbb{C} }} they are wrong. I assure you that it is {{M|\Vert\cdot\Vert:V\rightarrow\mathbb{R}_{\ge 0} }}. Other than this the references are valid, note that this is 'obvious' as if the image of {{M|\Vert\cdot\Vert}} could be in {{M|\mathbb{C} }} then the {{M|\Vert x\Vert\ge 0}} would make no sense. What ordering would you use? The [[canonical]] ordering used for the product of 2 spaces ({{M|\mathbb{R}\times\mathbb{R} }} in this case) is the [[Lexicographic ordering]] which would put {{M|1+1j\le 1+1000j}}!</ref><ref group="Note">The other mistake books make is saying explicitly that the [[field of a vector space]] needs to be {{M|\mathbb{R} }}</ref>}}</sup>:
 
# <math>\forall x\in V\ \|x\|\ge 0</math>
 
# <math>\forall x\in V\ \|x\|\ge 0</math>
 
# <math>\|x\|=0\iff x=0</math>
 
# <math>\|x\|=0\iff x=0</math>
Line 11: Line 11:
 
# <math>\forall x,y\in V\ \|x+y\|\le\|x\|+\|y\|</math> - a form of the [[Triangle inequality|triangle inequality]]
 
# <math>\forall x,y\in V\ \|x+y\|\le\|x\|+\|y\|</math> - a form of the [[Triangle inequality|triangle inequality]]
  
Often parts 1 and 2 are combined into the statement
+
Often parts 1 and 2 are combined into the statement:
 
* <math>\|x\|\ge 0\text{ and }\|x\|=0\iff x=0</math> so only 3 requirements will be stated.
 
* <math>\|x\|\ge 0\text{ and }\|x\|=0\iff x=0</math> so only 3 requirements will be stated.
I don't like this
+
I don't like this (inline with the [[Doctrine of monotonic definition]])
 +
 
 
==Terminology==
 
==Terminology==
 
Such a vector space equipped with such a function is called a [[Normed space|normed space]]<ref name="KMAPI"/>
 
Such a vector space equipped with such a function is called a [[Normed space|normed space]]<ref name="KMAPI"/>

Revision as of 10:31, 8 January 2016

An understanding of a norm is needed to proceed to linear isometries.

A norm is a special case of metrics. See Subtypes of topological spaces for more information

Definition

A norm on a vector space (V,F) (where F is either R or C) is a function :VR such that[1][2][3][4]See warning notes:[Note 1][Note 2]:

  1. xV x0
  2. x=0x=0
  3. λF,xV λx=|λ|x where || denotes absolute value
  4. x,yV x+yx+y - a form of the triangle inequality

Often parts 1 and 2 are combined into the statement:

  • x0 and x=0x=0 so only 3 requirements will be stated.

I don't like this (inline with the Doctrine of monotonic definition)

Terminology

Such a vector space equipped with such a function is called a normed space[1]

Relation to inner product

Every inner product ,:V×V(R or C) induces a norm given by:

  • x:=x,x

TODO: see inner product (norm induced by) for more details, on that page is a proof that x,x0 - I cannot think of any complex norms!


Induced metric

To get a metric space from a norm simply define[2][1]:

  • d(x,y):=xy

(See Subtypes of topological spaces for more information, this relationship is very important in Functional analysis)


TODO: Some sort of proof this is never complex


Weaker and stronger norms

Given a norm 1 and another 2 we say:

  • 1 is weaker than 2 if C>0xV such that x1Cx2
  • 2 is stronger than 1 in this case

Equivalence of norms

Given two norms 1 and 2 on a vector space V we say they are equivalent if:

c,CR with c,C>0 xV: cx1x2Cx1

[Expand]

Theorem: This is an Equivalence relation - so we may write this as 12

Note also that if 1 is both weaker and stronger than 2 they are equivalent

Examples

  • Any two norms on Rn are equivalent
  • The norms L1 and on C([0,1],R) are not equivalent.

Common norms

Name Norm Notes
Norms on Rn
1-norm x1=ni=1|xi| it's just a special case of the p-norm.
2-norm x2=ni=1x2i Also known as the Euclidean norm - it's just a special case of the p-norm.
p-norm xp=(ni=1|xi|p)1p (I use this notation because it can be easy to forget the p in p)
norm x=sup Also called sup-norm
Norms on \mathcal{C}([0,1],\mathbb{R})
\|\cdot\|_{L^p} \|f\|_{L^p}=\left(\int^1_0|f(x)|^pdx\right)^\frac{1}{p} NOTE be careful extending to interval [a,b] as proof it is a norm relies on having a unit measure
\infty-norm \|f\|_\infty=\sup_{x\in[0,1]}(|f(x)|) Following the same spirit as the \infty-norm on \mathbb{R}^n
\|\cdot\|_{C^k} \|f\|_{C^k}=\sum^k_{i=1}\sup_{x\in[0,1]}(|f^{(i)}|) here f^{(k)} denotes the k^\text{th} derivative.
Induced norms
Pullback norm \|\cdot\|_U For a linear isomorphism L:U\rightarrow V where V is a normed vector space

Examples

Notes

  1. Jump up A lot of books, including the brilliant Analysis - Part 1: Elements - Krzysztof Maurin referenced here state explicitly that it is possible for \Vert\cdot,\cdot\Vert:V\rightarrow\mathbb{C} they are wrong. I assure you that it is \Vert\cdot\Vert:V\rightarrow\mathbb{R}_{\ge 0} . Other than this the references are valid, note that this is 'obvious' as if the image of \Vert\cdot\Vert could be in \mathbb{C} then the \Vert x\Vert\ge 0 would make no sense. What ordering would you use? The canonical ordering used for the product of 2 spaces (\mathbb{R}\times\mathbb{R} in this case) is the Lexicographic ordering which would put 1+1j\le 1+1000j!
  2. Jump up The other mistake books make is saying explicitly that the field of a vector space needs to be \mathbb{R}

References

  1. Jump up to: 1.0 1.1 1.2 Analysis - Part 1: Elements - Krzysztof Maurin
  2. Jump up to: 2.0 2.1 Functional Analysis - George Bachman and Lawrence Narici
  3. Jump up Functional Analysis - A Gentle Introduction - Volume 1, by Dzung Minh Ha
  4. Jump up Real and Abstract Analysis - Edwin Hewitt & Karl Stromberg