Difference between revisions of "Limit (sequence)"

From Maths
Jump to: navigation, search
m (Process)
m (Requiring {{M|x\in X}})
Line 51: Line 51:
 
==Discussion==
 
==Discussion==
 
===Requiring {{M|x\in X}}===
 
===Requiring {{M|x\in X}}===
If {{M|x\notin X}} then {{M|d(x_n,x)}} is undefined, as {{M|d:X\times X\rightarrow\mathbb{R}_{\ge_0} }}, that is the [[metric space|distance metric]] is only defined for things in {{M|X}}
+
If {{M|x\notin X}} then {{M|d(x_n,x)}} is undefined, as {{M|d:X\times X\rightarrow\mathbb{R}_{\ge_0} }}, that is the [[metric space|distance metric]] is only defined for things in {{M|X}}.
 +
 
 +
To sidestep this limitation and talk about sequences that would converge if only their limit was in the space we consider [[Cauchy sequence|Cauchy sequences]]. It is easy to see that all convergent sequences are Cauchy:
 +
====[[Cauchy sequence]]====
 +
Recall a [[Cauchy sequence]] is defined as:<br/>
 +
{{:Cauchy Sequence/Definition}}
 +
{{Begin Theorem}}
 +
[[Every convergent sequence is Cauchy]]
 +
{{Begin Proof}}
 +
{{:Every convergent sequence is Cauchy/Proof}}
 +
{{End Proof}}{{End Theorem}}
 +
 
 
===Process===
 
===Process===
 
{{Begin Theorem}}
 
{{Begin Theorem}}

Revision as of 13:46, 5 December 2015

Note: see Limit page for other kinds of limits

Definition

Given a sequence (xn)n=1X, a metric space (X,d) (that is complete) and a point xX, the sequence (xn) is said to[1][Note 1]:

  • have limit x or converge to x

When:

  • ϵ>0NNnN[n>Nd(x,xn)<ϵ][Note 2]
    (note that ϵR, obviously - as the co-domain of d is R)
  • Read this as:
    for all ϵ greater than zero, there exists an N in the natural numbers such that for all n that are also natural we have that:
    whenever n is beyond N that xn is within ϵ of x

Equivalent definitions

Note: where it is not obvious changes have a { underneath them
[Expand]

lim

Discussion

Requiring x\in X

If x\notin X then d(x_n,x) is undefined, as d:X\times X\rightarrow\mathbb{R}_{\ge_0} , that is the distance metric is only defined for things in X.

To sidestep this limitation and talk about sequences that would converge if only their limit was in the space we consider Cauchy sequences. It is easy to see that all convergent sequences are Cauchy:

Cauchy sequence

Recall a Cauchy sequence is defined as:
Cauchy Sequence/Definition


Process

[Expand]

Discussion of why the definition is what it is.


See also

Notes

  1. Jump up Actually Maurin gives:
    • \forall\epsilon>0\exists N\in\mathbb{N}\forall n[n\ge N\implies d(x_n,x)<\epsilon] (the change is the \ge sign between the n and N) but as we shall see this doesn't matter
  2. Jump up In Krzysztof Maurin's notation this can be written as:
    • \bigwedge_{\epsilon>0}\bigvee_{N\in\mathbb{N} }\bigwedge_{n>N}d(x_n,x)<\epsilon

References

  1. Jump up Krzysztof Maurin - Analysis - Part 1: Elements