Difference between revisions of "Convergence of a sequence"

From Maths
Jump to: navigation, search
m
m (Redirected page to Limit (sequence))
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{Refactor notice}}
+
#REDIRECT [[Limit (sequence)]]
'''This page is to be phased out and the content moved to either more appropriate places or to [[Limit (sequence)]]'''
+
 
+
Like with [[Continuous map|continuity]] there are three forms for convergence of a [[Sequence]]
+
 
+
Given a sequence <math>(a_n)^n_{n=1}</math> we may say that it converges to {{M|a}} or <math>\lim_{n\rightarrow\infty}(a_n)=a</math> if and only if the following definition holds:
+
 
+
__TOC__
+
==First form==
+
Introductory form
+
<math>\forall\epsilon>0\exists N\in\mathbb{N}:n> N\implies|a_n-a|<\epsilon</math>
+
==Second form==
+
[[Metric space]] form
+
<math>\forall\epsilon>0\exists N\in\mathbb{N}:n> N\implies d(a_n-a)<\epsilon</math>
+
==Third form==
+
[[Topological space|Topological]] form
+
<math>\forall N_a\exists N\in\mathbb{N}: n> N\implies a_n\in N_a</math> where <math>N_a</math> denotes a neighbourhood of <math>a</math>
+
 
+
==Cauchy Criterion==
+
Convergence can be shown without knowing what exactly the sequence converges to, see the [[Cauchy criterion for convergence]] page
+
 
+
==Note on norms==
+
Recall from [[Norm|norm]] that we can simply define <math>d_{\|\cdot\|}(x,y)=\|x-y\|</math>, thus we can also have a slight variation of the metric form:
+
 
+
<math>\forall\epsilon>0\exists N\in\mathbb{N}:n> N\implies \|a_n-a\|<\epsilon</math>
+
 
+
Is is worth noting because in [[Functional Analysis]] norms are considered and if we deal with a [[Metric space|metric space]] we are inside a branch of
+
[[Topology|topology]]
+
  
 +
{{Todo|preserve "interesting" example}}
 
==Interesting examples==
 
==Interesting examples==
 
===<math>f_n(t)=t^n\rightarrow 0</math> in <math>\|\cdot\|_{L^1}</math>===
 
===<math>f_n(t)=t^n\rightarrow 0</math> in <math>\|\cdot\|_{L^1}</math>===
Line 36: Line 10:
 
This clearly <math>\rightarrow 0</math> - this is <math>0:[0,1]\rightarrow\mathbb{R}</math> which of course has [[Norm|norm]] {{M|0}}, we think of this from the sequence <math>(\|f_n-0\|_{L^1})^\infty_{n=1}\rightarrow 0\iff f_n\rightarrow 0</math>
 
This clearly <math>\rightarrow 0</math> - this is <math>0:[0,1]\rightarrow\mathbb{R}</math> which of course has [[Norm|norm]] {{M|0}}, we think of this from the sequence <math>(\|f_n-0\|_{L^1})^\infty_{n=1}\rightarrow 0\iff f_n\rightarrow 0</math>
  
{{Definition|Real Analysis|Topology|Functional Analysis}}
+
{{Definition|Real Analysis|Topology|Functional Analysis|Metric Space}}

Latest revision as of 13:30, 5 December 2015

Redirect to:


TODO: preserve "interesting" example


Interesting examples

[math]f_n(t)=t^n\rightarrow 0[/math] in [math]\|\cdot\|_{L^1}[/math]

Using the [math]\|\cdot\|_{L^1}[/math] norm stated here for convenience: [math]\|f\|_{L^p}=\left(\int^1_0|f(x)|^pdx\right)^\frac{1}{p}[/math] so [math]\|f\|_{L^1}=\int^1_0|f(x)|dx[/math]

We see that [math]\|f_n\|_{L^1}=\int^1_0x^ndx=\left[\frac{1}{n+1}x^{n+1}\right]^1_0=\frac{1}{n+1}[/math]

This clearly [math]\rightarrow 0[/math] - this is [math]0:[0,1]\rightarrow\mathbb{R}[/math] which of course has norm [ilmath]0[/ilmath], we think of this from the sequence [math](\|f_n-0\|_{L^1})^\infty_{n=1}\rightarrow 0\iff f_n\rightarrow 0[/math]