Difference between revisions of "Dynkin system"

From Maths
Jump to: navigation, search
(Created page with "==Definition== {{Extra Maths}}Given a set {{M|X}} and a family of subsets of {{M|X}}, which we shall denote {{M|\mathcal{D}\subseteq\mathcal{P}(X)}} is a ''Dynkin system''<ref...")
 
m
Line 1: Line 1:
 +
'''Note: '''a Dynkin system is also called a "{{M|d}}-system"<ref>Probability and Stochastics - Erhan Cinlar</ref> and the page [[d-system]] just redirects here.
 
==Definition==
 
==Definition==
{{Extra Maths}}Given a set {{M|X}} and a family of subsets of {{M|X}}, which we shall denote {{M|\mathcal{D}\subseteq\mathcal{P}(X)}} is a ''Dynkin system''<ref name="MIM">Rene L. Schilling - Measures, Integrals and Martingales</ref> if:
+
===[[Dynkin system/Definition 1|First Definition]]===
* {{M|X\in\mathcal{D} }}
+
{{Extra Maths}}{{:Dynkin system/Definition 1}}
* For any {{M|D\in\mathcal{D} }} we have {{M|D^c\in\mathcal{D} }}
+
===[[Dynkin system/Definition 2|Second Definition]]===
* For any {{M|1=(D_n)_{n=1}^\infty\subseteq\mathcal{D} }} is a [[Sequence|sequence]] of [[Pairwise disjoint|pairwise disjoint sets]] we have {{M|1=\udot_{n=1}^\infty D_n\in\mathcal{D} }}
+
{{:Dynkin system/Definition 2}}
 +
 
 
==Immediate results==
 
==Immediate results==
 
{{Begin Inline Theorem}}
 
{{Begin Inline Theorem}}
Line 16: Line 18:
 
* [[Dynkin system generated by]]
 
* [[Dynkin system generated by]]
 
* [[Types of set algebras]]
 
* [[Types of set algebras]]
 +
* [[p-system|{{M|p}}-system]]
 +
* [[Conditions for a Dynkin system to be a sigma-algebra|Conditions for a {{M|d}}-system to be a {{sigma|algebra}}]]
 +
==Notes==
 +
<references group="Note"/>
 
==References==
 
==References==
 
<references/>
 
<references/>
 
{{Definition|Measure Theory}}
 
{{Definition|Measure Theory}}

Revision as of 23:26, 2 August 2015

Note: a Dynkin system is also called a "[ilmath]d[/ilmath]-system"[1] and the page d-system just redirects here.

Definition

First Definition

[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math]Given a set [ilmath]X[/ilmath] and a family of subsets of [ilmath]X[/ilmath], which we shall denote [ilmath]\mathcal{D}\subseteq\mathcal{P}(X)[/ilmath] is a Dynkin system[2] if:

  • [ilmath]X\in\mathcal{D} [/ilmath]
  • For any [ilmath]D\in\mathcal{D} [/ilmath] we have [ilmath]D^c\in\mathcal{D} [/ilmath]
  • For any [ilmath](D_n)_{n=1}^\infty\subseteq\mathcal{D}[/ilmath] is a sequence of pairwise disjoint sets we have [ilmath]\udot_{n=1}^\infty D_n\in\mathcal{D}[/ilmath]

Second Definition

Given a set [ilmath]X[/ilmath] and a family of subsets of [ilmath]X[/ilmath] we denote [ilmath]\mathcal{D}\subseteq\mathcal{P}(X)[/ilmath] is a Dynkin system[3] on [ilmath]X[/ilmath] if:

  • [ilmath]X\in\mathcal{D} [/ilmath]
  • [ilmath]\forall A,B\in\mathcal{D}[B\subseteq A\implies A-B\in\mathcal{D}][/ilmath]
  • Given a sequence [ilmath](A_n)_{n=1}^\infty\subseteq\mathcal{D}[/ilmath] that is increasing[Note 1] and has [ilmath]\lim_{n\rightarrow\infty}(A_n)=A[/ilmath] we have [ilmath]A\in\mathcal{D}[/ilmath]


Immediate results

  • [ilmath]\emptyset\in\mathcal{D} [/ilmath]


Proof:

As [ilmath]\mathcal{D} [/ilmath] is closed under complements and [ilmath]X\in\mathcal{D} [/ilmath] by definition, [ilmath]X^c\in\mathcal{D} [/ilmath]
[ilmath]X^c=\emptyset[/ilmath] so [ilmath]\emptyset\in\mathcal{D} [/ilmath]

This completes the proof.

See also

Notes

  1. Recall this means [ilmath]A_{n}\subseteq A_{n+1} [/ilmath]

References

  1. Probability and Stochastics - Erhan Cinlar
  2. Measures, Integrals and Martingales - René L. Schilling
  3. Probability and Stochastics - Erhan Cinlar